Proportional Derivative Observer Design for Nonlinear Singular Systems

Yunfei Mu, Zilong Tan, Huaguang Zhang, Juan Zhang
{"title":"Proportional Derivative Observer Design for Nonlinear Singular Systems","authors":"Yunfei Mu, Zilong Tan, Huaguang Zhang, Juan Zhang","doi":"10.1109/DDCLS.2019.8909031","DOIUrl":null,"url":null,"abstract":"This paper focuses on proportional derivative observer design for a class of Takagi-Sugeno fuzzy singular systems. According to the available knowledge on premise variables, first, observer design with known premise variables is considered, and explicit parametrization of the desired observer is also given. Moreover, observer design with unknown premise variables is further investigated. Some new conditions, which guarantee the error system to be robust stability, are derived. All the stability criterions are presented in linear matrix inequalities framework, which can be conveniently verified via Matlab. Finally, two illustrative examples are simulated to illustrate the correctness of the present schemes.","PeriodicalId":6699,"journal":{"name":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"46 1","pages":"111-116"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2019.8909031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper focuses on proportional derivative observer design for a class of Takagi-Sugeno fuzzy singular systems. According to the available knowledge on premise variables, first, observer design with known premise variables is considered, and explicit parametrization of the desired observer is also given. Moreover, observer design with unknown premise variables is further investigated. Some new conditions, which guarantee the error system to be robust stability, are derived. All the stability criterions are presented in linear matrix inequalities framework, which can be conveniently verified via Matlab. Finally, two illustrative examples are simulated to illustrate the correctness of the present schemes.
非线性奇异系统的比例导数观测器设计
研究了一类Takagi-Sugeno模糊奇异系统的比例导数观测器设计。根据已知的前提变量知识,首先考虑了已知前提变量下的观测器设计,并给出了期望观测器的显式参数化。进一步研究了未知前提变量下的观测器设计问题。给出了保证误差系统鲁棒稳定的一些新条件。所有的稳定性判据都在线性矩阵不等式框架中给出,可以方便地通过Matlab进行验证。最后,通过两个实例的仿真验证了所提方案的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信