Towards physics-based segmentation of photographic color images

Jiebo Luo, R. T. Gray, Hsien-Che Lee
{"title":"Towards physics-based segmentation of photographic color images","authors":"Jiebo Luo, R. T. Gray, Hsien-Che Lee","doi":"10.1109/ICIP.1997.631979","DOIUrl":null,"url":null,"abstract":"In many digital image processing applications, image segmentation is required to provide initial partitioning of local image regions based on certain statistical or contextual homogeneity measures. One goal of image segmentation would be to segment the image into regions that correspond to physically and semantically coherent objects in the scene. We propose an improved color segmentation algorithm by taking advantage of a simple \"k-mode\" algorithm and an adaptive Bayesian k-means algorithm. The \"k-mode\" algorithm uses a physics-based distance metric to generate regular partitioning of the color space. The adaptive k-means algorithm utilizes two additional mechanisms, i.e., spatial homogeneity constraints and spatial adaptivity, to achieve more robust and coherent segmentation. The proposed algorithm integrates a physically more meaningful color space and the corresponding color difference metric into the the adaptive Bayesian K-means framework in an effort towards physics-based segmentation of photographic color images.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"71 1","pages":"58-61 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.631979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

In many digital image processing applications, image segmentation is required to provide initial partitioning of local image regions based on certain statistical or contextual homogeneity measures. One goal of image segmentation would be to segment the image into regions that correspond to physically and semantically coherent objects in the scene. We propose an improved color segmentation algorithm by taking advantage of a simple "k-mode" algorithm and an adaptive Bayesian k-means algorithm. The "k-mode" algorithm uses a physics-based distance metric to generate regular partitioning of the color space. The adaptive k-means algorithm utilizes two additional mechanisms, i.e., spatial homogeneity constraints and spatial adaptivity, to achieve more robust and coherent segmentation. The proposed algorithm integrates a physically more meaningful color space and the corresponding color difference metric into the the adaptive Bayesian K-means framework in an effort towards physics-based segmentation of photographic color images.
基于物理的摄影彩色图像分割研究
在许多数字图像处理应用中,图像分割需要根据某些统计或上下文同质性度量提供局部图像区域的初始划分。图像分割的一个目标是将图像分割成与场景中物理和语义上一致的物体相对应的区域。我们提出了一种改进的颜色分割算法,利用简单的“k-mode”算法和自适应贝叶斯k-means算法。“k-mode”算法使用基于物理的距离度量来生成颜色空间的规则分区。自适应k-means算法利用空间同质性约束和空间自适应两种附加机制来实现更鲁棒和连贯的分割。该算法将物理上更有意义的色彩空间和相应的色差度量集成到自适应贝叶斯K-means框架中,以实现基于物理的摄影彩色图像分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信