A note on the exponential Diophantine equation (A^2n)^x+(B^2n)^y=((A^2+B^2)n)^z

Pub Date : 2020-12-23 DOI:10.3336/gm.55.2.03
M. Le, G. Soydan
{"title":"A note on the exponential Diophantine equation (A^2n)^x+(B^2n)^y=((A^2+B^2)n)^z","authors":"M. Le, G. Soydan","doi":"10.3336/gm.55.2.03","DOIUrl":null,"url":null,"abstract":"Let A, B be positive integers such that min{A,B}>1, gcd(A,B) = 1 and 2|B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A >B3/8, then the equation (A2 n)x + (B2 n)y = ((A2 + B2)n)z has no positive integer solutions (x,y,z) with x > z > y; if B>A3/6, then it has no solutions (x,y,z) with y>z>x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B ≡ 2 (mod 4) and A >B3/8, then this equation has only the positive integer solution (x,y,z)=(1,1,1).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.2.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let A, B be positive integers such that min{A,B}>1, gcd(A,B) = 1 and 2|B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A >B3/8, then the equation (A2 n)x + (B2 n)y = ((A2 + B2)n)z has no positive integer solutions (x,y,z) with x > z > y; if B>A3/6, then it has no solutions (x,y,z) with y>z>x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B ≡ 2 (mod 4) and A >B3/8, then this equation has only the positive integer solution (x,y,z)=(1,1,1).
分享
查看原文
关于指数丢番图方程(A^2n)^x+(B^2n)^y=(A^2+B^2)n)^z的注释
设A,B为正整数,使得min{A,B}>1, gcd(A,B) = 1和2|B。利用R. Scott和R. Styer的三元纯指数Diophantine方程解的上界,证明了对于任意正整数n,如果A >B3/8,则方程(A2 n)x + (B2 n)y = (A2 + B2)n)z不存在正整数解(x,y,z)且x > z > y;如果B>A3/6,那么它不存在解(x,y,z)且y>z>x。因此,结合上述结论和已有的一些结果,我们可以推导出,对于任意正整数n,若B≡2 (mod 4)且A >B3/8,则该方程只有正整数解(x,y,z)=(1,1,1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信