Fourier Series Approximation in Besov Spaces

IF 0.7 Q2 MATHEMATICS
Birendra Singh, Uaday Singh
{"title":"Fourier Series Approximation in Besov Spaces","authors":"Birendra Singh, Uaday Singh","doi":"10.1155/2023/4250869","DOIUrl":null,"url":null,"abstract":"Defined on the top of classical \n \n \n \n L\n \n \n p\n \n \n \n -spaces, the Besov spaces of periodic functions are good at encoding the smoothness properties of their elements. These spaces are also characterized in terms of summability conditions on the coefficients in trigonometric series expansions of their elements. In this paper, we study the approximation properties of \n \n 2\n π\n \n -periodic functions in a Besov space under a norm involving the seminorm associated with the space. To achieve our results, we use a summability method presented by a lower triangular matrix with monotonic rows.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"35 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4250869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Defined on the top of classical L p -spaces, the Besov spaces of periodic functions are good at encoding the smoothness properties of their elements. These spaces are also characterized in terms of summability conditions on the coefficients in trigonometric series expansions of their elements. In this paper, we study the approximation properties of 2 π -periodic functions in a Besov space under a norm involving the seminorm associated with the space. To achieve our results, we use a summability method presented by a lower triangular matrix with monotonic rows.
Besov空间中的傅里叶级数近似
周期函数的Besov空间定义在经典的L - p空间之上,它擅长于编码其元素的平滑性。这些空间的特征还体现在其元素的三角级数展开式的系数可和性条件上。本文研究了Besov空间中包含半模的范数下2 π周期函数的逼近性质。为了得到我们的结果,我们使用了一个由单调行下三角矩阵给出的可和性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信