{"title":"ANALYSIS ON MACHINABILITY OF GFRP COMPOSITE MATERIALS USING TURNING PROCESSES","authors":"Rajmohan D","doi":"10.37255/jme.v16i4pp127-134","DOIUrl":null,"url":null,"abstract":"Glass fibre reinforced polymer (GFRP) composite materials replace traditional engineering materials due to their properties. Accordingly, the need for accurate machining of composites has increased enormously. The advantages include high strength to weight ratio, high fracture toughness and excellent corrosion and thermal resistance. Even though the moulding process may produce GFRP parts, they require further machining to facilitate dimensional control for easy assembly and control of surface quality for functional aspects. The material removal mechanism is different from that of machining single-phase materials, such as metals. GFRP are extremely abrasive when machined. Thus, selecting the cutting tool and the cutting parameters is very important in the machining process. The machinability in turning operations of glass fiber reinforced plastics (GFRP) will be investigated by the super-hard cutting tool (PCD and Ceramic Inserts). A plan of experiments will be performed on controlled machining with cutting parameters prefixed in the workpiece.","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"217 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/jme.v16i4pp127-134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Glass fibre reinforced polymer (GFRP) composite materials replace traditional engineering materials due to their properties. Accordingly, the need for accurate machining of composites has increased enormously. The advantages include high strength to weight ratio, high fracture toughness and excellent corrosion and thermal resistance. Even though the moulding process may produce GFRP parts, they require further machining to facilitate dimensional control for easy assembly and control of surface quality for functional aspects. The material removal mechanism is different from that of machining single-phase materials, such as metals. GFRP are extremely abrasive when machined. Thus, selecting the cutting tool and the cutting parameters is very important in the machining process. The machinability in turning operations of glass fiber reinforced plastics (GFRP) will be investigated by the super-hard cutting tool (PCD and Ceramic Inserts). A plan of experiments will be performed on controlled machining with cutting parameters prefixed in the workpiece.