{"title":"Speed Synchronization of Multiple Induction Motors with Total Sliding Mode Control","authors":"De-zong ZHAO , Chun-wen LI , Jun REN","doi":"10.1016/S1874-8651(10)60077-4","DOIUrl":null,"url":null,"abstract":"<div><p>A speed synchronization control strategy for multiple induction motors, based on adjacent cross-coupling control structure, is developed by employing total sliding mode control method. The proposed control strategy is to stabilize speed tracking of each induction motor while synchronizing its speed with the speed of the other motors so as to make speed synchronization error amongst induction motors converge to zero. The global stability and the convergence of the designed controller are proved by using Lyapunov method. Simulation results demonstrate the effectiveness of the proposed method.</p></div>","PeriodicalId":101206,"journal":{"name":"Systems Engineering - Theory & Practice","volume":"29 10","pages":"Pages 110-117"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-8651(10)60077-4","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering - Theory & Practice","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874865110600774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A speed synchronization control strategy for multiple induction motors, based on adjacent cross-coupling control structure, is developed by employing total sliding mode control method. The proposed control strategy is to stabilize speed tracking of each induction motor while synchronizing its speed with the speed of the other motors so as to make speed synchronization error amongst induction motors converge to zero. The global stability and the convergence of the designed controller are proved by using Lyapunov method. Simulation results demonstrate the effectiveness of the proposed method.