Polyethylene Glycols as Efficient Catalysts for the Oxidation of Xanthine Alkaloids by Ceric Ammonium Nitrate in Acetonitrile: A Kinetic and Mechanistic Approach

S. Shylaja, K. Rajanna, K. Ramesh, K. Reddy, P. G. Reddy
{"title":"Polyethylene Glycols as Efficient Catalysts for the Oxidation of Xanthine Alkaloids by Ceric Ammonium Nitrate in Acetonitrile: A Kinetic and Mechanistic Approach","authors":"S. Shylaja, K. Rajanna, K. Ramesh, K. Reddy, P. G. Reddy","doi":"10.1155/2013/835610","DOIUrl":null,"url":null,"abstract":"Kinetics of oxidation of xanthine alkaloids, such as Xanthine (XAN), hypoxanthine (HXAN), caffeine (CAF), theophylline (TPL), and theobromine (TBR), have been studied with ceric ammonium nitrate (CAN) using poly ethylene glycols (PEG) as catalysts. Reaction obeyed first order kinetics in both [CAN] and [Xanthine alkaloid]. Highly sluggish CAN-xanthine alkaloid reactions (in acetonitrile media even at elevated temperatures) are enhanced in presence PEGs (PEG-200, -300, -400, -600). An increase in [PEG] increased the rate of oxidation linearly. This observation coupled with a change in absorption of CAN in presence of PEG, [H–(OCH2–CH2)n–O–NH4Ce(NO3)4(CH3CN)] (PEG bound CAN species), is considered to be more reactive than CAN. The mechanism of oxidation in PEG media has been explained by Menger-Portnoy’s enzymatic model.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/835610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Kinetics of oxidation of xanthine alkaloids, such as Xanthine (XAN), hypoxanthine (HXAN), caffeine (CAF), theophylline (TPL), and theobromine (TBR), have been studied with ceric ammonium nitrate (CAN) using poly ethylene glycols (PEG) as catalysts. Reaction obeyed first order kinetics in both [CAN] and [Xanthine alkaloid]. Highly sluggish CAN-xanthine alkaloid reactions (in acetonitrile media even at elevated temperatures) are enhanced in presence PEGs (PEG-200, -300, -400, -600). An increase in [PEG] increased the rate of oxidation linearly. This observation coupled with a change in absorption of CAN in presence of PEG, [H–(OCH2–CH2)n–O–NH4Ce(NO3)4(CH3CN)] (PEG bound CAN species), is considered to be more reactive than CAN. The mechanism of oxidation in PEG media has been explained by Menger-Portnoy’s enzymatic model.
聚乙二醇在乙腈中作为硝酸铈铵氧化黄嘌呤生物碱的高效催化剂:动力学和机理研究
以硝酸铈铵(CAN)为催化剂,研究了黄嘌呤(XAN)、次黄嘌呤(HXAN)、咖啡因(CAF)、茶碱(TPL)和可可碱(TBR)等黄嘌呤类生物碱的氧化动力学。[CAN]和[黄嘌呤生物碱]的反应均服从一级动力学。高度缓慢的can -黄嘌呤生物碱反应(在乙腈介质中即使在高温下)在peg (PEG-200, -300, -400, -600)的存在下增强。[PEG]的增加线性地增加了氧化速率。这一观察结果加上在PEG存在下CAN的吸收变化,[H - (OCH2-CH2) n-O-NH4Ce (NO3)4(CH3CN)] (PEG结合的CAN物种)被认为比CAN更具反应性。PEG介质中的氧化机理已由Menger-Portnoy的酶模型解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信