Ahmad Yaseen Abdulrazzak, Saleem Latif Mohammed, Ali Al-Naji, J. Chahl
{"title":"Computer-Aid System for Automated Jaundice Detection","authors":"Ahmad Yaseen Abdulrazzak, Saleem Latif Mohammed, Ali Al-Naji, J. Chahl","doi":"10.51173/jt.v5i1.1128","DOIUrl":null,"url":null,"abstract":"At the beginning of their lives, newborns may have a widespread condition known as Jaundice or Hyperbilirubinemia. High levels of bilirubin in the blood are the primary cause of jaundice. Severe cases of jaundice may cause acute bilirubin encephalopathy due to the toxicity of bilirubin to the cells of the brain, which may lead to kernicterus. Kernicterus causes several symptoms, including a permanent upward look, loss of hearing, and repetitive and uncontrolled movements. Therefore, diagnosing this condition at the appropriate time helps to prevent chronic effects. In this study, jaundice or hyperbilirubinemia is diagnosed using a computer vision system based on a random forest algorithm. The system comprises a digital HD camera, a computer device with a Matlab application installed to analyze and detect the skin color changes of the infant, and an Arduino Uno microcontroller to control an LED ultraviolet light. A set of neonate images were collected to train the random forest algorithm, including 374 for normal and 137 for jaundiced infants. |The experimental results using the random forest algorithm for classification reached an accuracy of 98.4375%. The results of this study are promising and open doors for new monitoring applications in various medical diseases detection with a high degree of accuracy.","PeriodicalId":39617,"journal":{"name":"Journal of Biomolecular Techniques","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51173/jt.v5i1.1128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
At the beginning of their lives, newborns may have a widespread condition known as Jaundice or Hyperbilirubinemia. High levels of bilirubin in the blood are the primary cause of jaundice. Severe cases of jaundice may cause acute bilirubin encephalopathy due to the toxicity of bilirubin to the cells of the brain, which may lead to kernicterus. Kernicterus causes several symptoms, including a permanent upward look, loss of hearing, and repetitive and uncontrolled movements. Therefore, diagnosing this condition at the appropriate time helps to prevent chronic effects. In this study, jaundice or hyperbilirubinemia is diagnosed using a computer vision system based on a random forest algorithm. The system comprises a digital HD camera, a computer device with a Matlab application installed to analyze and detect the skin color changes of the infant, and an Arduino Uno microcontroller to control an LED ultraviolet light. A set of neonate images were collected to train the random forest algorithm, including 374 for normal and 137 for jaundiced infants. |The experimental results using the random forest algorithm for classification reached an accuracy of 98.4375%. The results of this study are promising and open doors for new monitoring applications in various medical diseases detection with a high degree of accuracy.
期刊介绍:
The Journal of Biomolecular Techniques is a peer-reviewed publication issued five times a year by the Association of Biomolecular Resource Facilities. The Journal was established to promote the central role biotechnology plays in contemporary research activities, to disseminate information among biomolecular resource facilities, and to communicate the biotechnology research conducted by the Association’s Research Groups and members, as well as other investigators.