A treecode algorithm based on tricubic interpolation

Henry A. Boateng , Svetlana Tlupova
{"title":"A treecode algorithm based on tricubic interpolation","authors":"Henry A. Boateng ,&nbsp;Svetlana Tlupova","doi":"10.1016/j.jcmds.2022.100068","DOIUrl":null,"url":null,"abstract":"<div><p>Treecode algorithms efficiently approximate N-body interactions in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mtext>log</mtext><mi>N</mi><mo>)</mo></mrow></mrow></math></span>. In order to treat general 3D kernels, recent developments employ polynomial interpolation to approximate the kernels. The polynomials are a tensor product of 1-dimensional polynomials. Here, we develop an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mtext>log</mtext><mi>N</mi><mo>)</mo></mrow></mrow></math></span> tricubic interpolation based treecode method for 3D kernels. The tricubic interpolation is inherently three-dimensional and as such does not employ a tensor product. The form allows for easy evaluation of the derivatives of the kernel, required in dynamical simulations, which is not the case for the tensor product approach. We develop both a particle-cluster and cluster-particle variants and present results for the Coulomb, screened Coulomb and the real space Ewald kernels. We also present results of an MD simulation of a Lennard-Jones liquid using the tricubic treecode.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"5 ","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000281/pdfft?md5=3c134f39c68f4ef44c46526b17abbfdc&pid=1-s2.0-S2772415822000281-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Treecode algorithms efficiently approximate N-body interactions in O(N) or O(NlogN). In order to treat general 3D kernels, recent developments employ polynomial interpolation to approximate the kernels. The polynomials are a tensor product of 1-dimensional polynomials. Here, we develop an O(NlogN) tricubic interpolation based treecode method for 3D kernels. The tricubic interpolation is inherently three-dimensional and as such does not employ a tensor product. The form allows for easy evaluation of the derivatives of the kernel, required in dynamical simulations, which is not the case for the tensor product approach. We develop both a particle-cluster and cluster-particle variants and present results for the Coulomb, screened Coulomb and the real space Ewald kernels. We also present results of an MD simulation of a Lennard-Jones liquid using the tricubic treecode.

一种基于三次插值的三码算法
Treecode算法在O(N)或O(NlogN)中有效地近似N-体相互作用。为了处理一般的三维核,最近的发展采用多项式插值来近似核。多项式是一维多项式的张量积。在这里,我们开发了一种基于O(NlogN)三次插值的三维核树编码方法。三次插值本质上是三维的,因此不使用张量积。这种形式允许对核的导数进行简单的评估,这在动态模拟中是必需的,而张量积方法则不是这样。我们开发了粒子-簇和簇-粒子变体,并给出了库仑、筛选库仑和真实空间埃瓦尔德核的结果。我们还介绍了使用三立方树码的Lennard-Jones液体的MD模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信