Factors affecting air distribution in air conditioning air supply room based on SUPG finite element and zero equation

IF 2.2 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Zhen Miao, Zhendi Ma, Qiong-xiang Kong, Yaolin Jiang
{"title":"Factors affecting air distribution in air conditioning air supply room based on SUPG finite element and zero equation","authors":"Zhen Miao, Zhendi Ma, Qiong-xiang Kong, Yaolin Jiang","doi":"10.1080/19401493.2023.2177731","DOIUrl":null,"url":null,"abstract":"ABSTRACT To simulate the indoor air distribution accurately and quickly, this paper proposed a turbulence calculation model based on the zero-equation model and the SUPG finite element method. The optimal calculation parameters were investigated. The effects of air outlet positions, Reynolds numbers, and obstacle positions on indoor air distribution were studied. The results show that the ranges of Reynolds numbers which satisfy the summer and winter demands of indoor air velocity as the outlet at the right down position are larger than those when the outlet locates left down. When the air outlet locates at the left down position, the velocity non-uniformity coefficients are less than those under the other two conditions. Regardless of whether the air outlet is at the left or right position, the obstacle in the middle of a room can lead to worse velocity uniformity when air velocities in the working zone can meet the velocity demand.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"142 1","pages":"460 - 476"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2023.2177731","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT To simulate the indoor air distribution accurately and quickly, this paper proposed a turbulence calculation model based on the zero-equation model and the SUPG finite element method. The optimal calculation parameters were investigated. The effects of air outlet positions, Reynolds numbers, and obstacle positions on indoor air distribution were studied. The results show that the ranges of Reynolds numbers which satisfy the summer and winter demands of indoor air velocity as the outlet at the right down position are larger than those when the outlet locates left down. When the air outlet locates at the left down position, the velocity non-uniformity coefficients are less than those under the other two conditions. Regardless of whether the air outlet is at the left or right position, the obstacle in the middle of a room can lead to worse velocity uniformity when air velocities in the working zone can meet the velocity demand.
基于SUPG有限元和零方程的空调送风室内气流组织影响因素
为了准确、快速地模拟室内气流分布,本文提出了一种基于零方程模型和SUPG有限元法的湍流计算模型。研究了最佳计算参数。研究了出风口位置、雷诺数和障碍物位置对室内气流组织的影响。结果表明:当出口位于右下时,满足夏季和冬季室内风速要求的雷诺数范围大于出口位于左下时;当出风口位于左下位置时,速度不均匀系数小于其他两种情况。无论出风口是在左侧还是在右侧,当工作区的风速可以满足速度需求时,房间中间的障碍物会导致速度均匀性变差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Building Performance Simulation
Journal of Building Performance Simulation CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
5.50
自引率
12.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies We welcome building performance simulation contributions that explore the following topics related to buildings and communities: -Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics). -Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems. -Theoretical aspects related to occupants, weather data, and other boundary conditions. -Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid. -Uncertainty, sensitivity analysis, and calibration. -Methods and algorithms for validating models and for verifying solution methods and tools. -Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics. -Techniques for educating and training tool users. -Software development techniques and interoperability issues with direct applicability to building performance simulation. -Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信