S. Sanner, Shengbo Guo, T. Graepel, S. Kharazmi, Sarvnaz Karimi
{"title":"Diverse retrieval via greedy optimization of expected 1-call@k in a latent subtopic relevance model","authors":"S. Sanner, Shengbo Guo, T. Graepel, S. Kharazmi, Sarvnaz Karimi","doi":"10.1145/2063576.2063869","DOIUrl":null,"url":null,"abstract":"It has been previously observed that optimization of the 1-call@k relevance objective (i.e., a set-based objective that is 1 if at least one document is relevant, otherwise 0) empirically correlates with diverse retrieval. In this paper, we proceed one step further and show theoretically that greedily optimizing expected 1-call@k w.r.t. a latent subtopic model of binary relevance leads to a diverse retrieval algorithm sharing many features of existing diversification approaches. This new result is complementary to a variety of diverse retrieval algorithms derived from alternate rank-based relevance criteria such as average precision and reciprocal rank. As such, the derivation presented here for expected 1-call@k provides a novel theoretical perspective on the emergence of diversity via a latent subtopic model of relevance --- an idea underlying both ambiguous and faceted subtopic retrieval that have been used to motivate diverse retrieval.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"38 1","pages":"1977-1980"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
It has been previously observed that optimization of the 1-call@k relevance objective (i.e., a set-based objective that is 1 if at least one document is relevant, otherwise 0) empirically correlates with diverse retrieval. In this paper, we proceed one step further and show theoretically that greedily optimizing expected 1-call@k w.r.t. a latent subtopic model of binary relevance leads to a diverse retrieval algorithm sharing many features of existing diversification approaches. This new result is complementary to a variety of diverse retrieval algorithms derived from alternate rank-based relevance criteria such as average precision and reciprocal rank. As such, the derivation presented here for expected 1-call@k provides a novel theoretical perspective on the emergence of diversity via a latent subtopic model of relevance --- an idea underlying both ambiguous and faceted subtopic retrieval that have been used to motivate diverse retrieval.