Long-range force and interfacial energy between dissimilar metals

N.H. March, B.V. Paranjape
{"title":"Long-range force and interfacial energy between dissimilar metals","authors":"N.H. March,&nbsp;B.V. Paranjape","doi":"10.1016/0378-5963(85)90239-9","DOIUrl":null,"url":null,"abstract":"<div><p>The Lifshitz theory is applied to calculate the long-range dispersion force between two semi-infinite half planes of dissimilar metals. It is shown that the asymptotic form of the force <em>F</em>, for large separation <em>d</em> between the half planes is <em>F</em> = <em>C</em><sub>12</sub>/<em>d</em><sup>3</sup>, where an explicit expression is given for <em>C</em><sub>12</sub> in terms of the two plasma frequencies <em>ω</em><sub>p2</sub> and <em>ω</em><sub>p1</sub> of the interacting metals. Attention is then given to the contributions to the interfacial energy of the composite system. In an ideal situation, in which the two metals had (a) the same crystal structure, (b) identical lattice parameters and (c) no charge transfer, the interfacial energy is the sum <em>σ</em><sub>1</sub> + <em>σ</em><sub>2</sub> of the surface energies of the two pure metals involved. It is argued that the charge transfer contribution (c) takes the form (<em>Δ</em><em>W</em>)<sup>2</sup>/<em>ρ</em><sup>2</sup><em>l</em><sub>c</sub>, where <em>Δ</em><em>W</em> is the difference in work functions of the two pure metals and <em>l</em><sub>c</sub> is a characteristic length. Contributions arising from departures for ideal lattice matching, embodied in point (b) above can be estimated from the isothermal compressibility, <em>κ</em><sub>T</sub>, of the pure metals. Further, invoking for a pure metal the known approximate relation that <span><math><mtext>σκ</mtext><msub><mi></mi><mn><mtext>T</mtext></mn></msub><mtext> ∼ 1 </mtext><mtext>A</mtext><mtext>̊</mtext></math></span>. this lattice mismatch contribution is expressed again in terms of surface energies. It will usually alter the contribution <em>σ</em><sub>1</sub> + <em>σ</em><sub>2</sub> of ine interfacial energy by a multiplying factor less than, but quite near to unity.</p></div>","PeriodicalId":100105,"journal":{"name":"Applications of Surface Science","volume":"22 ","pages":"Pages 1042-1048"},"PeriodicalIF":0.0000,"publicationDate":"1985-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0378-5963(85)90239-9","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Surface Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0378596385902399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Lifshitz theory is applied to calculate the long-range dispersion force between two semi-infinite half planes of dissimilar metals. It is shown that the asymptotic form of the force F, for large separation d between the half planes is F = C12/d3, where an explicit expression is given for C12 in terms of the two plasma frequencies ωp2 and ωp1 of the interacting metals. Attention is then given to the contributions to the interfacial energy of the composite system. In an ideal situation, in which the two metals had (a) the same crystal structure, (b) identical lattice parameters and (c) no charge transfer, the interfacial energy is the sum σ1 + σ2 of the surface energies of the two pure metals involved. It is argued that the charge transfer contribution (c) takes the form (ΔW)2/ρ2lc, where ΔW is the difference in work functions of the two pure metals and lc is a characteristic length. Contributions arising from departures for ideal lattice matching, embodied in point (b) above can be estimated from the isothermal compressibility, κT, of the pure metals. Further, invoking for a pure metal the known approximate relation that σκT ∼ 1 Å. this lattice mismatch contribution is expressed again in terms of surface energies. It will usually alter the contribution σ1 + σ2 of ine interfacial energy by a multiplying factor less than, but quite near to unity.

异种金属间的远程力和界面能
应用Lifshitz理论计算了不同金属的半无限半平面间的长程色散力。结果表明,对于半平面之间的大间距d,力F的渐近形式为F = C12/d3,其中C12用相互作用金属的两个等离子体频率ωp2和ωp1给出了显式表达式。然后注意对复合体系界面能的贡献。在两种金属(a)晶体结构相同,(b)晶格参数相同,(c)无电荷转移的理想情况下,界面能为两种纯金属表面能的σ1 + σ2之和。认为电荷转移贡献(c)的形式为(ΔW)2/ρ2lc,其中ΔW为两种纯金属的功函数之差,lc为特征长度。由理想晶格匹配的偏离所产生的贡献,体现在上面(b)点,可以从纯金属的等温压缩率κT来估计。进一步,对纯金属调用已知的近似关系σκT ~ 1 Å。这种晶格失配的贡献再次用表面能表示。它通常会改变线界面能的贡献σ1 + σ2,其倍数小于,但非常接近于1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信