Optimal learning of Markov k-tree topology

Di Chang , Liang Ding , Russell Malmberg , David Robinson , Matthew Wicker , Hongfei Yan , Aaron Martinez , Liming Cai
{"title":"Optimal learning of Markov k-tree topology","authors":"Di Chang ,&nbsp;Liang Ding ,&nbsp;Russell Malmberg ,&nbsp;David Robinson ,&nbsp;Matthew Wicker ,&nbsp;Hongfei Yan ,&nbsp;Aaron Martinez ,&nbsp;Liming Cai","doi":"10.1016/j.jcmds.2022.100046","DOIUrl":null,"url":null,"abstract":"<div><p>The seminal work of Chow and Liu (1968) shows that approximation of a finite probabilistic system by Markov trees can achieve the minimum information loss with the topology of a maximum spanning tree. Our current paper generalizes the result to Markov networks of tree-width <span><math><mrow><mo>≤</mo><mi>k</mi></mrow></math></span>, for every fixed <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. In particular, we prove that approximation of a finite probabilistic system with such Markov networks has the minimum information loss when the network topology is achieved with a maximum spanning <span><math><mi>k</mi></math></span>-tree. While constructing a maximum spanning <span><math><mi>k</mi></math></span>-tree is intractable for even <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span>, we show that polynomial algorithms can be ensured by a sufficient condition accommodated by many meaningful applications. In particular, we show an efficient algorithm for learning the optimal topology of higher order correlations among random variables that belong to an underlying linear structure. As an application, we demonstrate effectiveness of this efficient algorithm applied to biomolecular 3D structure prediction.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"4 ","pages":"Article 100046"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277241582200013X/pdfft?md5=aad4f1525f5d10d5657975c4606226da&pid=1-s2.0-S277241582200013X-main.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277241582200013X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The seminal work of Chow and Liu (1968) shows that approximation of a finite probabilistic system by Markov trees can achieve the minimum information loss with the topology of a maximum spanning tree. Our current paper generalizes the result to Markov networks of tree-width k, for every fixed k2. In particular, we prove that approximation of a finite probabilistic system with such Markov networks has the minimum information loss when the network topology is achieved with a maximum spanning k-tree. While constructing a maximum spanning k-tree is intractable for even k=2, we show that polynomial algorithms can be ensured by a sufficient condition accommodated by many meaningful applications. In particular, we show an efficient algorithm for learning the optimal topology of higher order correlations among random variables that belong to an underlying linear structure. As an application, we demonstrate effectiveness of this efficient algorithm applied to biomolecular 3D structure prediction.

马尔可夫k树拓扑的最优学习
Chow和Liu(1968)的开创性工作表明,用马尔可夫树逼近有限概率系统可以用最大生成树的拓扑实现最小的信息损失。本文将结果推广到树宽≤k的马尔可夫网络,对于每一个固定k≥2。特别地,我们证明了当网络拓扑具有最大生成k树时,用这种马尔可夫网络逼近有限概率系统具有最小的信息损失。当k=2时构造最大生成k树是困难的,我们证明多项式算法可以通过许多有意义的应用所容纳的充分条件来保证。特别是,我们展示了一种有效的算法,用于学习属于底层线性结构的随机变量之间高阶相关性的最优拓扑。作为一个应用,我们证明了该算法在生物分子三维结构预测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信