Visual Reranking through Weakly Supervised Multi-graph Learning

Cheng Deng, R. Ji, W. Liu, D. Tao, Xinbo Gao
{"title":"Visual Reranking through Weakly Supervised Multi-graph Learning","authors":"Cheng Deng, R. Ji, W. Liu, D. Tao, Xinbo Gao","doi":"10.1109/ICCV.2013.323","DOIUrl":null,"url":null,"abstract":"Visual reranking has been widely deployed to refine the quality of conventional content-based image retrieval engines. The current trend lies in employing a crowd of retrieved results stemming from multiple feature modalities to boost the overall performance of visual reranking. However, a major challenge pertaining to current reranking methods is how to take full advantage of the complementary property of distinct feature modalities. Given a query image and one feature modality, a regular visual reranking framework treats the top-ranked images as pseudo positive instances which are inevitably noisy, difficult to reveal this complementary property, and thus lead to inferior ranking performance. This paper proposes a novel image reranking approach by introducing a Co-Regularized Multi-Graph Learning (Co-RMGL) framework, in which the intra-graph and inter-graph constraints are simultaneously imposed to encode affinities in a single graph and consistency across different graphs. Moreover, weakly supervised learning driven by image attributes is performed to denoise the pseudo-labeled instances, thereby highlighting the unique strength of individual feature modality. Meanwhile, such learning can yield a few anchors in graphs that vitally enable the alignment and fusion of multiple graphs. As a result, an edge weight matrix learned from the fused graph automatically gives the ordering to the initially retrieved results. We evaluate our approach on four benchmark image retrieval datasets, demonstrating a significant performance gain over the state-of-the-arts.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"126 1","pages":"2600-2607"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

Abstract

Visual reranking has been widely deployed to refine the quality of conventional content-based image retrieval engines. The current trend lies in employing a crowd of retrieved results stemming from multiple feature modalities to boost the overall performance of visual reranking. However, a major challenge pertaining to current reranking methods is how to take full advantage of the complementary property of distinct feature modalities. Given a query image and one feature modality, a regular visual reranking framework treats the top-ranked images as pseudo positive instances which are inevitably noisy, difficult to reveal this complementary property, and thus lead to inferior ranking performance. This paper proposes a novel image reranking approach by introducing a Co-Regularized Multi-Graph Learning (Co-RMGL) framework, in which the intra-graph and inter-graph constraints are simultaneously imposed to encode affinities in a single graph and consistency across different graphs. Moreover, weakly supervised learning driven by image attributes is performed to denoise the pseudo-labeled instances, thereby highlighting the unique strength of individual feature modality. Meanwhile, such learning can yield a few anchors in graphs that vitally enable the alignment and fusion of multiple graphs. As a result, an edge weight matrix learned from the fused graph automatically gives the ordering to the initially retrieved results. We evaluate our approach on four benchmark image retrieval datasets, demonstrating a significant performance gain over the state-of-the-arts.
基于弱监督多图学习的视觉重排序
视觉重排序已被广泛应用于改进传统的基于内容的图像检索引擎的质量。目前的趋势是利用来自多种特征模态的大量检索结果来提高视觉重排序的整体性能。然而,当前的重排序方法面临的主要挑战是如何充分利用不同特征模态的互补性。给定一个查询图像和一个特征模态,常规的视觉重排序框架将排名靠前的图像视为伪正实例,这些伪正实例不可避免地存在噪声,难以揭示这种互补特性,从而导致排名性能较差。本文通过引入协同正则化多图学习(Co-RMGL)框架,提出了一种新的图像重排序方法,该框架同时施加图内约束和图间约束来编码单个图中的亲和力和不同图之间的一致性。此外,通过图像属性驱动的弱监督学习对伪标记实例进行去噪,从而突出单个特征模态的独特强度。同时,这种学习可以在图中产生一些锚点,这些锚点对多个图的对齐和融合至关重要。结果,从融合图中学习到的边权矩阵自动给出了初始检索结果的排序。我们在四个基准图像检索数据集上评估了我们的方法,证明了比最先进的性能有显著的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信