{"title":"Temporal Autocorrelation of Sentinel-1 SAR Imagery for Detecting Settlement Expansion","authors":"J. Kapp, J. Kemp","doi":"10.3390/geomatics3030023","DOIUrl":null,"url":null,"abstract":"Urban areas are rapidly expanding globally. The detection of settlement expansion can, however, be challenging due to the rapid rate of expansion, especially for informal settlements. This paper presents a solution in the form of an unsupervised autocorrelation-based approach. Temporal autocorrelation function (ACF) values derived from hyper-temporal Sentinel-1 imagery were calculated for all time lags using VV backscatter values. Various thresholds were applied to these ACF values in order to create urban change maps. Two different orbital combinations were tested over four informal settlement areas in South Africa. Promising results were achieved in the two of the study areas with mean normalized Matthews Correlation Coefficients (MCCn) of 0.79 and 0.78. A lower performance was obtained in the remaining two areas (mean MCCn of 0.61 and 0.65) due to unfavorable building orientations and low building densities. The first results also indicate that the most stable and optimal ACF-based threshold of 95 was achieved when using images from both relative orbits, thereby incorporating more incidence angles. The results demonstrate the capacity of ACF-based methods for detecting settlement expansion. Practically, this ACF-based method could be used to reduce the time and labor costs of detecting and mapping newly built settlements in developing regions.","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geomatics3030023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Urban areas are rapidly expanding globally. The detection of settlement expansion can, however, be challenging due to the rapid rate of expansion, especially for informal settlements. This paper presents a solution in the form of an unsupervised autocorrelation-based approach. Temporal autocorrelation function (ACF) values derived from hyper-temporal Sentinel-1 imagery were calculated for all time lags using VV backscatter values. Various thresholds were applied to these ACF values in order to create urban change maps. Two different orbital combinations were tested over four informal settlement areas in South Africa. Promising results were achieved in the two of the study areas with mean normalized Matthews Correlation Coefficients (MCCn) of 0.79 and 0.78. A lower performance was obtained in the remaining two areas (mean MCCn of 0.61 and 0.65) due to unfavorable building orientations and low building densities. The first results also indicate that the most stable and optimal ACF-based threshold of 95 was achieved when using images from both relative orbits, thereby incorporating more incidence angles. The results demonstrate the capacity of ACF-based methods for detecting settlement expansion. Practically, this ACF-based method could be used to reduce the time and labor costs of detecting and mapping newly built settlements in developing regions.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements