Predicting user traits from a snapshot of apps installed on a smartphone

Suranga Seneviratne, A. Seneviratne, P. Mohapatra, A. Mahanti
{"title":"Predicting user traits from a snapshot of apps installed on a smartphone","authors":"Suranga Seneviratne, A. Seneviratne, P. Mohapatra, A. Mahanti","doi":"10.1145/2636242.2636244","DOIUrl":null,"url":null,"abstract":"Third party apps are an integral component of the smartphone ecosystem. In this paper, we investigate how user traits can be inferred by observing only a single snapshot of installed apps. Using supervised learning methods and minimal external information we show that user traits such as religion, relationship status, spoken languages, countries of interest, and whether or not the user is a parent of small children, can be easily predicted. Using data collected from over 200 smartphone users, specifically the list of installed apps and the corresponding ground truth traits of the users, we show that for most traits we can achieve over 90% precision. Our inference method can be used to provide services such as personalized content delivery or recommender systems for users. We also highlight privacy loss that can occur from unrestricted access to the app lists in popular smartphone operating systems.","PeriodicalId":43578,"journal":{"name":"Mobile Computing and Communications Review","volume":"1 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"143","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile Computing and Communications Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2636242.2636244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 143

Abstract

Third party apps are an integral component of the smartphone ecosystem. In this paper, we investigate how user traits can be inferred by observing only a single snapshot of installed apps. Using supervised learning methods and minimal external information we show that user traits such as religion, relationship status, spoken languages, countries of interest, and whether or not the user is a parent of small children, can be easily predicted. Using data collected from over 200 smartphone users, specifically the list of installed apps and the corresponding ground truth traits of the users, we show that for most traits we can achieve over 90% precision. Our inference method can be used to provide services such as personalized content delivery or recommender systems for users. We also highlight privacy loss that can occur from unrestricted access to the app lists in popular smartphone operating systems.
通过智能手机上安装的应用程序快照预测用户特征
第三方应用是智能手机生态系统不可或缺的组成部分。在本文中,我们研究了如何通过仅观察已安装应用程序的单个快照来推断用户特征。通过使用监督学习方法和最小的外部信息,我们可以很容易地预测用户特征,如宗教信仰、关系状态、口语、感兴趣的国家,以及用户是否是小孩的父母。使用从200多名智能手机用户收集的数据,特别是安装的应用程序列表和用户相应的真实特征,我们表明,对于大多数特征,我们可以达到90%以上的精度。我们的推理方法可以用于为用户提供个性化内容交付或推荐系统等服务。我们还强调,在流行的智能手机操作系统中,不受限制地访问应用程序列表可能会导致隐私丢失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信