A multichannel MMSE-based framework for joint blind source separation and noise reduction

M. Souden, S. Araki, K. Kinoshita, T. Nakatani, H. Sawada
{"title":"A multichannel MMSE-based framework for joint blind source separation and noise reduction","authors":"M. Souden, S. Araki, K. Kinoshita, T. Nakatani, H. Sawada","doi":"10.1109/ICASSP.2012.6287829","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new framework to separate multiple speech signals and reduce the additive acoustic noise using multiple microphones. In this framework, we start by formulating the minimum-mean-square error (MMSE) criterion to retrieve each of the desired speech signals from the observed mixtures of sounds and outline the importance of multi-speaker activity detection. The latter is modeled by introducing a latent variable whose posterior probability is computed via expectation maximization (EM) combining both the spatial and spectral cues of the multichannel speech observations. We experimentally demonstrate that the resulting joint blind source separation (BSS) and noise reduction solution performs remarkably well in reverberant and noisy environments.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6287829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we propose a new framework to separate multiple speech signals and reduce the additive acoustic noise using multiple microphones. In this framework, we start by formulating the minimum-mean-square error (MMSE) criterion to retrieve each of the desired speech signals from the observed mixtures of sounds and outline the importance of multi-speaker activity detection. The latter is modeled by introducing a latent variable whose posterior probability is computed via expectation maximization (EM) combining both the spatial and spectral cues of the multichannel speech observations. We experimentally demonstrate that the resulting joint blind source separation (BSS) and noise reduction solution performs remarkably well in reverberant and noisy environments.
一种基于多通道mmse的联合盲源分离与降噪框架
在本文中,我们提出了一个新的框架来分离多个语音信号,并减少使用多个麦克风的附加噪声。在这个框架中,我们首先制定最小均方误差(MMSE)标准,从观察到的混合声音中检索每个所需的语音信号,并概述了多说话者活动检测的重要性。后者是通过引入一个潜在变量来建模的,该潜在变量的后验概率是通过期望最大化(EM)结合多通道语音观测的空间和频谱线索计算的。实验证明,所得到的联合盲源分离(BSS)和降噪方案在混响和噪声环境中表现优异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信