Existence Results of Langevin Equations with Caputo–Hadamard Fractional Operator

IF 0.7 Q2 MATHEMATICS
Sombir Dhaniya, Anoop Kumar, Aziz Khan, T. Abdeljawad, Manar A. Alqudah
{"title":"Existence Results of Langevin Equations with Caputo–Hadamard Fractional Operator","authors":"Sombir Dhaniya, Anoop Kumar, Aziz Khan, T. Abdeljawad, Manar A. Alqudah","doi":"10.1155/2023/2288477","DOIUrl":null,"url":null,"abstract":"In this manuscript, we deal with a nonlinear Langevin fractional differential equation that involves the Caputo–Hadamard and Caputo fractional operators, with nonperiodic and nonlocal integral boundary conditions. The results presented in this study establish the existence, uniqueness, and Hyers–Ulam (HU) stability of the solution to the proposed equation. We achieved our main result by using the Banach contraction mapping principle and Krasonoselskii’s fixed point theorem. Furthermore, we introduce an application to demonstrate the validity of the results of our findings.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2288477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript, we deal with a nonlinear Langevin fractional differential equation that involves the Caputo–Hadamard and Caputo fractional operators, with nonperiodic and nonlocal integral boundary conditions. The results presented in this study establish the existence, uniqueness, and Hyers–Ulam (HU) stability of the solution to the proposed equation. We achieved our main result by using the Banach contraction mapping principle and Krasonoselskii’s fixed point theorem. Furthermore, we introduce an application to demonstrate the validity of the results of our findings.
具有Caputo-Hadamard分数算子的Langevin方程的存在性结果
在这篇文章中,我们处理了一个非线性Langevin分数阶微分方程,它涉及到Caputo - hadamard和Caputo分数算子,具有非周期和非局部积分边界条件。本文的研究结果证明了该方程解的存在性、唯一性和Hyers-Ulam (HU)稳定性。我们利用Banach收缩映射原理和Krasonoselskii的不动点定理获得了我们的主要结果。此外,我们还介绍了一个应用程序来证明我们的研究结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信