Synergetic Effect on Electrochemical Performance of Activated Carbon - Multiwalled Carbon Nanotubes Supercapacitor using various Electrodes in Aqueous Electrolyte

Q3 Materials Science
D. Thillaikkarasi, R Ramesh
{"title":"Synergetic Effect on Electrochemical Performance of Activated Carbon - Multiwalled Carbon Nanotubes Supercapacitor using various Electrodes in Aqueous Electrolyte","authors":"D. Thillaikkarasi, R Ramesh","doi":"10.13074/jent.2022.06.222453","DOIUrl":null,"url":null,"abstract":"An Electrical double-layer capacitor (EDLC) has been fabricated with activated carbon (AC) and multi-walled carbon nanotubes (MWCNTs), which in turn were synthesized from Pongamia pinnata fruit shell and its seed oil, respectively. The activated carbon was produced by the chemical activation process at varying carbonization temperatures from 600-900 °C for 5 hours in N2 atmosphere. The obtained activated carbon had a high surface area of 1170 m2 g-1 and a total pore volume of 0.5907 cm3 g-1. The surface area of MWCNTs was 216.1 2 m2 g-1 and the total pore volume was 1.5067 cm3 g-1. The as-prepared AC and MWCNTs were characterized by surface area analysis using Brunner-Emmett-Teller method (BET), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopic analysis, Field emission scanning electron microscopy (FESEM), High-resolution transmission electron microscopy (HR-TEM), Energy-dispersive X-ray spectroscopy (EDAX) and DFT (Density functional theory). The electrochemical performance of AC-MWCNTs (25:75) Stainless steel (SS) electrode and Graphite sheet electrode (GE) were studied by cyclic voltammetry, Galvanostatic charge-discharge and electrochemical impedance spectroscopy using 0.5 M Na2SO4 aqueous electrolyte. It has shown a specific capacitance of 174 Fg-1 and 95.26 Fg-1 respectively, using the three-electrode system at a current density of 1 mA g-1. The AC-MWCNT (25:75) SS electrode has exhibited excellent specific capacitance (CSP) and its Specific energy density and Power density were greater than AC-MWCNT (25:75) GE. The electrochemical performance of AC-MWCNT (25:75) SS electrode was identified as a suitable, low-cost and promising energy storage device for future generations. The present investigation attempts to promote the supercapacitor device in the context of available and future technologies for alternative energy systems with outstanding performance.","PeriodicalId":36296,"journal":{"name":"Journal of Water and Environmental Nanotechnology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environmental Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13074/jent.2022.06.222453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

An Electrical double-layer capacitor (EDLC) has been fabricated with activated carbon (AC) and multi-walled carbon nanotubes (MWCNTs), which in turn were synthesized from Pongamia pinnata fruit shell and its seed oil, respectively. The activated carbon was produced by the chemical activation process at varying carbonization temperatures from 600-900 °C for 5 hours in N2 atmosphere. The obtained activated carbon had a high surface area of 1170 m2 g-1 and a total pore volume of 0.5907 cm3 g-1. The surface area of MWCNTs was 216.1 2 m2 g-1 and the total pore volume was 1.5067 cm3 g-1. The as-prepared AC and MWCNTs were characterized by surface area analysis using Brunner-Emmett-Teller method (BET), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopic analysis, Field emission scanning electron microscopy (FESEM), High-resolution transmission electron microscopy (HR-TEM), Energy-dispersive X-ray spectroscopy (EDAX) and DFT (Density functional theory). The electrochemical performance of AC-MWCNTs (25:75) Stainless steel (SS) electrode and Graphite sheet electrode (GE) were studied by cyclic voltammetry, Galvanostatic charge-discharge and electrochemical impedance spectroscopy using 0.5 M Na2SO4 aqueous electrolyte. It has shown a specific capacitance of 174 Fg-1 and 95.26 Fg-1 respectively, using the three-electrode system at a current density of 1 mA g-1. The AC-MWCNT (25:75) SS electrode has exhibited excellent specific capacitance (CSP) and its Specific energy density and Power density were greater than AC-MWCNT (25:75) GE. The electrochemical performance of AC-MWCNT (25:75) SS electrode was identified as a suitable, low-cost and promising energy storage device for future generations. The present investigation attempts to promote the supercapacitor device in the context of available and future technologies for alternative energy systems with outstanding performance.
不同电极对活性炭-多壁碳纳米管超级电容器电化学性能的协同影响
采用活性炭(AC)和多壁碳纳米管(MWCNTs)制备了电双层电容器(EDLC)。在N2气氛中,在600 ~ 900℃的不同炭化温度下,经5小时化学活化制得活性炭。所得活性炭的比表面积为1170 m2 g-1,总孔体积为0.5907 cm3 g-1。MWCNTs的表面积为216.12 m2 g-1,总孔容为1.5067 cm3 g-1。采用brunner - emmet - teller法(BET)、x射线衍射分析(XRD)、x射线光电子能谱(XPS)、拉曼光谱分析、场发射扫描电镜(FESEM)、高分辨率透射电子显微镜(HR-TEM)、能量色散x射线能谱(EDAX)和密度泛函数理论(DFT)对制备的AC和MWCNTs进行了表征。采用循环伏安法、恒流充放电法和电化学阻抗法,在0.5 M Na2SO4水溶液中研究了AC-MWCNTs(25:75)不锈钢(SS)电极和石墨片电极的电化学性能。在电流密度为1ma g-1的三电极系统下,其比电容分别为174 Fg-1和95.26 Fg-1。AC-MWCNT (25:75) SS电极表现出优异的比电容(CSP),其比能量密度和功率密度均大于AC-MWCNT (25:75) GE。AC-MWCNT (25:75) SS电极的电化学性能被认为是一种合适的、低成本的、有前途的未来储能装置。本研究试图在现有的和未来的替代能源系统技术的背景下,以优异的性能推广超级电容器装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Water and Environmental Nanotechnology
Journal of Water and Environmental Nanotechnology Materials Science-Materials Science (miscellaneous)
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信