Replication and Its Application to Weak Convergence

C. Dong, M. Kouritzin
{"title":"Replication and Its Application to Weak Convergence","authors":"C. Dong, M. Kouritzin","doi":"10.7939/R3K06XF1W","DOIUrl":null,"url":null,"abstract":"Herein, a methodology is developed to replicate functions, measures and stochastic processes onto a compact metric space. Many results are easily established for the replica objects and then transferred back to the original ones. Two problems are solved within to demonstrate the method: (1) Finite-dimensional convergence for processes living on general topological spaces. (2) New tightness and relative compactness criteria are given for the Skorokhod space $D(\\mathbf{R}^{+};E)$ with $E$ being a general Tychonoff space. The methods herein are also used in companion papers to establish the: (3) existence of, uniqueness of and convergence to martingale problem solutions, (4) classical Fujisaki-Kallianpur-Kunita and Duncan-Mortensen-Zakai filtering equations and stationary filters, (5) finite-dimensional convergence to stationary signal-filter pairs, (6) invariant measures of Markov processes, and (7) Ray-Knight theory all in general settings.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7939/R3K06XF1W","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Herein, a methodology is developed to replicate functions, measures and stochastic processes onto a compact metric space. Many results are easily established for the replica objects and then transferred back to the original ones. Two problems are solved within to demonstrate the method: (1) Finite-dimensional convergence for processes living on general topological spaces. (2) New tightness and relative compactness criteria are given for the Skorokhod space $D(\mathbf{R}^{+};E)$ with $E$ being a general Tychonoff space. The methods herein are also used in companion papers to establish the: (3) existence of, uniqueness of and convergence to martingale problem solutions, (4) classical Fujisaki-Kallianpur-Kunita and Duncan-Mortensen-Zakai filtering equations and stationary filters, (5) finite-dimensional convergence to stationary signal-filter pairs, (6) invariant measures of Markov processes, and (7) Ray-Knight theory all in general settings.
复制及其在弱收敛中的应用
本文提出了一种将函数、测度和随机过程复制到紧致度量空间的方法。许多结果很容易为复制对象建立,然后转移回原始对象。本文解决了两个问题来证明该方法:(1)一般拓扑空间上过程的有限维收敛性。(2)给出了Skorokhod空间$D(\mathbf{R}^{+};E)$的紧性和相对紧性判据,其中$E$为一般Tychonoff空间。本文的方法也被用于在其他论文中建立:(3)鞅问题解的存在性、唯一性和收敛性,(4)经典的fujisaki - kallianpurl - kunita和duncan - mortenseni - zakai滤波方程和平稳滤波器,(5)平稳信号-滤波器对的有限维收敛性,(6)马尔可夫过程的不变测度,以及(7)一般情况下的Ray-Knight理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信