{"title":"Differential magnetless circulator using modulated bandstop filters","authors":"Ahmed Kord, D. Sounas, A. Alú","doi":"10.1109/MWSYM.2017.8058574","DOIUrl":null,"url":null,"abstract":"In this paper, we present a differential magnetless circulator by combining two angular-momentum-biased single-ended circulators, each of which consists of three first-order bandstop LC filters connected in a delta topology and modulated in time with a phase difference of 120 deg between each other. Compared to a single-ended architecture, the differential one drastically reduces even-order intermodulation products, improves insertion loss, extends the bandwidth, and significantly decreases the required modulation frequency. We present the theory of such a circulator and validate it with simulated and measured results.","PeriodicalId":6481,"journal":{"name":"2017 IEEE MTT-S International Microwave Symposium (IMS)","volume":"134 1","pages":"384-387"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2017.8058574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
In this paper, we present a differential magnetless circulator by combining two angular-momentum-biased single-ended circulators, each of which consists of three first-order bandstop LC filters connected in a delta topology and modulated in time with a phase difference of 120 deg between each other. Compared to a single-ended architecture, the differential one drastically reduces even-order intermodulation products, improves insertion loss, extends the bandwidth, and significantly decreases the required modulation frequency. We present the theory of such a circulator and validate it with simulated and measured results.