Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks

IF 1.1 Q2 MATHEMATICS, APPLIED
M. Abdolhosseinzadeh, Mir Mohammad Alipour
{"title":"Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks","authors":"M. Abdolhosseinzadeh, Mir Mohammad Alipour","doi":"10.3934/naco.2020028","DOIUrl":null,"url":null,"abstract":"In a grid network, the nodes could be traversed either horizontally or vertically. The constrained shortest Hamiltonian path goes over the nodes between a source node and a destination node, and it is constrained to traverse some nodes at least once while others could be traversed several times. There are various applications of the problem, especially in routing problems. It is an NP-complete problem, and the well-known Bellman-Held-Karp algorithm could solve the shortest Hamiltonian circuit problem within \\begin{document}$ {\\rm O(}{{\\rm 2}}^{{\\rm n}}{{\\rm n}}^{{\\rm 2}}{\\rm )} $\\end{document} time complexity; however, the shortest Hamiltonian path problem is more complicated. So, a metaheuristic algorithm based on ant colony optimization is applied to obtain the optimal solution. The proposed method applies the rooted shortest path tree structure since in the optimal solution the paths between the restricted nodes are the shortest paths. Then, the shortest path tree is obtained by at most \\begin{document}$ {\\rm O(}{{\\rm n}}^{{\\rm 3}}{\\rm )} $\\end{document} time complexity at any iteration and the ants begin to improve the solution and the optimal solution is constructed in a reasonable time. The algorithm is verified by some numerical examples and the ant colony parameters are tuned by design of experiment method, and the optimal setting for different size of networks are determined.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"41 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2020028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

In a grid network, the nodes could be traversed either horizontally or vertically. The constrained shortest Hamiltonian path goes over the nodes between a source node and a destination node, and it is constrained to traverse some nodes at least once while others could be traversed several times. There are various applications of the problem, especially in routing problems. It is an NP-complete problem, and the well-known Bellman-Held-Karp algorithm could solve the shortest Hamiltonian circuit problem within \begin{document}$ {\rm O(}{{\rm 2}}^{{\rm n}}{{\rm n}}^{{\rm 2}}{\rm )} $\end{document} time complexity; however, the shortest Hamiltonian path problem is more complicated. So, a metaheuristic algorithm based on ant colony optimization is applied to obtain the optimal solution. The proposed method applies the rooted shortest path tree structure since in the optimal solution the paths between the restricted nodes are the shortest paths. Then, the shortest path tree is obtained by at most \begin{document}$ {\rm O(}{{\rm n}}^{{\rm 3}}{\rm )} $\end{document} time complexity at any iteration and the ants begin to improve the solution and the optimal solution is constructed in a reasonable time. The algorithm is verified by some numerical examples and the ant colony parameters are tuned by design of experiment method, and the optimal setting for different size of networks are determined.
网格网络约束最短哈密顿路径问题蚁群优化方法参数整定实验设计
In a grid network, the nodes could be traversed either horizontally or vertically. The constrained shortest Hamiltonian path goes over the nodes between a source node and a destination node, and it is constrained to traverse some nodes at least once while others could be traversed several times. There are various applications of the problem, especially in routing problems. It is an NP-complete problem, and the well-known Bellman-Held-Karp algorithm could solve the shortest Hamiltonian circuit problem within \begin{document}$ {\rm O(}{{\rm 2}}^{{\rm n}}{{\rm n}}^{{\rm 2}}{\rm )} $\end{document} time complexity; however, the shortest Hamiltonian path problem is more complicated. So, a metaheuristic algorithm based on ant colony optimization is applied to obtain the optimal solution. The proposed method applies the rooted shortest path tree structure since in the optimal solution the paths between the restricted nodes are the shortest paths. Then, the shortest path tree is obtained by at most \begin{document}$ {\rm O(}{{\rm n}}^{{\rm 3}}{\rm )} $\end{document} time complexity at any iteration and the ants begin to improve the solution and the optimal solution is constructed in a reasonable time. The algorithm is verified by some numerical examples and the ant colony parameters are tuned by design of experiment method, and the optimal setting for different size of networks are determined.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
62
期刊介绍: Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信