{"title":"Achievable Minimally-Contrastive Counterfactual Explanations","authors":"H. Barzekar, S. McRoy","doi":"10.3390/make5030048","DOIUrl":null,"url":null,"abstract":"Decision support systems based on machine learning models should be able to help users identify opportunities and threats. Popular model-agnostic explanation models can identify factors that support various predictions, answering questions such as “What factors affect sales?” or “Why did sales decline?”, but do not highlight what a person should or could do to get a more desirable outcome. Counterfactual explanation approaches address intervention, and some even consider feasibility, but none consider their suitability for real-time applications, such as question answering. Here, we address this gap by introducing a novel model-agnostic method that provides specific, feasible changes that would impact the outcomes of a complex Black Box AI model for a given instance and assess its real-world utility by measuring its real-time performance and ability to find achievable changes. The method uses the instance of concern to generate high-precision explanations and then applies a secondary method to find achievable minimally-contrastive counterfactual explanations (AMCC) while limiting the search to modifications that satisfy domain-specific constraints. Using a widely recognized dataset, we evaluated the classification task to ascertain the frequency and time required to identify successful counterfactuals. For a 90% accurate classifier, our algorithm identified AMCC explanations in 47% of cases (38 of 81), with an average discovery time of 80 ms. These findings verify the algorithm’s efficiency in swiftly producing AMCC explanations, suitable for real-time systems. The AMCC method enhances the transparency of Black Box AI models, aiding individuals in evaluating remedial strategies or assessing potential outcomes.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"32 1","pages":"922-936"},"PeriodicalIF":4.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make5030048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Decision support systems based on machine learning models should be able to help users identify opportunities and threats. Popular model-agnostic explanation models can identify factors that support various predictions, answering questions such as “What factors affect sales?” or “Why did sales decline?”, but do not highlight what a person should or could do to get a more desirable outcome. Counterfactual explanation approaches address intervention, and some even consider feasibility, but none consider their suitability for real-time applications, such as question answering. Here, we address this gap by introducing a novel model-agnostic method that provides specific, feasible changes that would impact the outcomes of a complex Black Box AI model for a given instance and assess its real-world utility by measuring its real-time performance and ability to find achievable changes. The method uses the instance of concern to generate high-precision explanations and then applies a secondary method to find achievable minimally-contrastive counterfactual explanations (AMCC) while limiting the search to modifications that satisfy domain-specific constraints. Using a widely recognized dataset, we evaluated the classification task to ascertain the frequency and time required to identify successful counterfactuals. For a 90% accurate classifier, our algorithm identified AMCC explanations in 47% of cases (38 of 81), with an average discovery time of 80 ms. These findings verify the algorithm’s efficiency in swiftly producing AMCC explanations, suitable for real-time systems. The AMCC method enhances the transparency of Black Box AI models, aiding individuals in evaluating remedial strategies or assessing potential outcomes.