Using Sessions from Clickstream Data Analysis to Uncover Different Types of Twitter Behaviour

F. Meier, Johannes Aigner, David Elsweiler
{"title":"Using Sessions from Clickstream Data Analysis to Uncover Different Types of Twitter Behaviour","authors":"F. Meier, Johannes Aigner, David Elsweiler","doi":"10.18452/1452","DOIUrl":null,"url":null,"abstract":"While much is known about how Twitter is used for specific tasks or by particular groups of users, we understand surprisingly little about how the service is used generally on a daily basis. To learn more about general Twitter behaviour we perform a cluster analysis on a rich set of longitudinal interaction log data describing interactions 44 users had with the Twitter website over a 5 month period. We report on and interpret 5 clusters representing common usage patterns with the service.","PeriodicalId":90875,"journal":{"name":"ISI ... : ... IEEE Intelligence and Security Informatics. IEEE International Conference on Intelligence and Security Informatics","volume":"14 1","pages":"237-250"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISI ... : ... IEEE Intelligence and Security Informatics. IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18452/1452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

While much is known about how Twitter is used for specific tasks or by particular groups of users, we understand surprisingly little about how the service is used generally on a daily basis. To learn more about general Twitter behaviour we perform a cluster analysis on a rich set of longitudinal interaction log data describing interactions 44 users had with the Twitter website over a 5 month period. We report on and interpret 5 clusters representing common usage patterns with the service.
使用点击流数据分析的会话来揭示不同类型的Twitter行为
虽然我们对Twitter是如何被特定的任务或特定的用户群体所使用的了解很多,但令人惊讶的是,我们对Twitter的日常使用情况却知之甚少。为了更多地了解Twitter的一般行为,我们对一组丰富的纵向交互日志数据进行了聚类分析,这些数据描述了44名用户在5个月内与Twitter网站的交互。我们报告并解释了代表该服务常见使用模式的5个集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信