Left-invariant para-Sasakian structure on the Heisenberg group

IF 0.3 Q4 MECHANICS
V. I. Pan’zhenskii, A. O. Rastrepina
{"title":"Left-invariant para-Sasakian structure on the Heisenberg group","authors":"V. I. Pan’zhenskii, A. O. Rastrepina","doi":"10.17223/19988621/75/4","DOIUrl":null,"url":null,"abstract":"Among the eight three-dimensional Thurston geometries, there is the Heisenberg group, the nilpotent Lie group of real 3x3 matrices of a special form. It is known that this group has a left-invariant Sasakian structure. This article proves that there is also a paracontact metric structure on the Heisenberg group, which is also Sasakian. This group has a unique contact metric connection with skew-symmetric torsion, which is invariant under the group of automorphisms of the para-Sasakian structure. The discovered connection is proved to be a contact metric connection for any para-Sasakian structure. The concept of a connection compatible with the distribution is introduced. It is found that the Levi-Civita connection and the contact metric connection on the Heisenberg group endowed with a para-Sasakian structure are compatible with the contact distribution. Their orthogonal projections on this distribution determine the same truncated connection. It is proved that Levi-Civita contact geodesics and truncated geodesics coincide. It is found that contact geodesics are either straight lines lying in the contact planes or parabolas the orthogonal projections of which on the contact planes are straight lines. The results obtained in this article are also valid for the multidimensional Heisenberg group. AMS Mathematical Subject Classification: 53D10, 53C50","PeriodicalId":43729,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","volume":"138 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988621/75/4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

Among the eight three-dimensional Thurston geometries, there is the Heisenberg group, the nilpotent Lie group of real 3x3 matrices of a special form. It is known that this group has a left-invariant Sasakian structure. This article proves that there is also a paracontact metric structure on the Heisenberg group, which is also Sasakian. This group has a unique contact metric connection with skew-symmetric torsion, which is invariant under the group of automorphisms of the para-Sasakian structure. The discovered connection is proved to be a contact metric connection for any para-Sasakian structure. The concept of a connection compatible with the distribution is introduced. It is found that the Levi-Civita connection and the contact metric connection on the Heisenberg group endowed with a para-Sasakian structure are compatible with the contact distribution. Their orthogonal projections on this distribution determine the same truncated connection. It is proved that Levi-Civita contact geodesics and truncated geodesics coincide. It is found that contact geodesics are either straight lines lying in the contact planes or parabolas the orthogonal projections of which on the contact planes are straight lines. The results obtained in this article are also valid for the multidimensional Heisenberg group. AMS Mathematical Subject Classification: 53D10, 53C50
Heisenberg群上的左不变para-Sasakian结构
在八种三维瑟斯顿几何中,有海森堡群,即特殊形式的实数3x3矩阵的幂零李群。已知这个群具有左不变的Sasakian结构。本文证明了Heisenberg群上也存在一个准接触度量结构,它也是Sasakian的。该群具有唯一的具有偏对称扭转的接触度量连接,该连接在类sasakian结构的自同构群下是不变的。证明了所发现的连接是任何类sasaki结构的接触度量连接。引入了与分布兼容的连接的概念。发现具有准sasakian结构的Heisenberg群上的Levi-Civita连接和接触度量连接与接触分布是相容的。它们在这个分布上的正交投影决定了相同的截断连接。证明了列维-西维塔接触测地线与截断测地线重合。我们发现,接触测地线要么是位于接触平面上的直线,要么是抛物线,其在接触平面上的正交投影是直线。本文所得到的结果对多维海森堡群也是有效的。AMS数学学科分类:53D10, 53C50
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信