Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems

J. A. Cardoso, Patricio Cerda, Denilson S. Pereira, P. Ubilla
{"title":"Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems","authors":"J. A. Cardoso, Patricio Cerda, Denilson S. Pereira, P. Ubilla","doi":"10.3934/dcds.2020392","DOIUrl":null,"url":null,"abstract":"We prove the existence of a bounded positive solution for the following stationary Schrodinger equation \\begin{document}$ \\begin{equation*} -\\Delta u+V(x)u = f(x,u),\\,\\,\\, x\\in\\mathbb{R}^n,\\,\\, n\\geq 3, \\end{equation*} $\\end{document} where \\begin{document}$ V $\\end{document} is a vanishing potential and \\begin{document}$ f $\\end{document} has a sublinear growth at the origin (for example if \\begin{document}$ f(x,u) $\\end{document} is a concave function near the origen). For this purpose we use a Brezis-Kamin argument included in [ 6 ]. In addition, if \\begin{document}$ f $\\end{document} has a superlinear growth at infinity, besides the first solution, we obtain a second solution. For this we introduce an auxiliar equation which is variational, however new difficulties appear when handling the compactness. For instance, our approach can be applied for nonlinearities of the type \\begin{document}$ \\rho(x)f(u) $\\end{document} where \\begin{document}$ f $\\end{document} is a concave-convex function and \\begin{document}$ \\rho $\\end{document} satisfies the \\begin{document}$ \\mathrm{(H)} $\\end{document} property introduced in [ 6 ]. We also note that we do not impose any integrability assumptions on the function \\begin{document}$ \\rho $\\end{document} , which is imposed in most works.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"904 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2020392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We prove the existence of a bounded positive solution for the following stationary Schrodinger equation \begin{document}$ \begin{equation*} -\Delta u+V(x)u = f(x,u),\,\,\, x\in\mathbb{R}^n,\,\, n\geq 3, \end{equation*} $\end{document} where \begin{document}$ V $\end{document} is a vanishing potential and \begin{document}$ f $\end{document} has a sublinear growth at the origin (for example if \begin{document}$ f(x,u) $\end{document} is a concave function near the origen). For this purpose we use a Brezis-Kamin argument included in [ 6 ]. In addition, if \begin{document}$ f $\end{document} has a superlinear growth at infinity, besides the first solution, we obtain a second solution. For this we introduce an auxiliar equation which is variational, however new difficulties appear when handling the compactness. For instance, our approach can be applied for nonlinearities of the type \begin{document}$ \rho(x)f(u) $\end{document} where \begin{document}$ f $\end{document} is a concave-convex function and \begin{document}$ \rho $\end{document} satisfies the \begin{document}$ \mathrm{(H)} $\end{document} property introduced in [ 6 ]. We also note that we do not impose any integrability assumptions on the function \begin{document}$ \rho $\end{document} , which is imposed in most works.
Schrödinger包含Brezis-Kamin型问题的消失势方程
We prove the existence of a bounded positive solution for the following stationary Schrodinger equation \begin{document}$ \begin{equation*} -\Delta u+V(x)u = f(x,u),\,\,\, x\in\mathbb{R}^n,\,\, n\geq 3, \end{equation*} $\end{document} where \begin{document}$ V $\end{document} is a vanishing potential and \begin{document}$ f $\end{document} has a sublinear growth at the origin (for example if \begin{document}$ f(x,u) $\end{document} is a concave function near the origen). For this purpose we use a Brezis-Kamin argument included in [ 6 ]. In addition, if \begin{document}$ f $\end{document} has a superlinear growth at infinity, besides the first solution, we obtain a second solution. For this we introduce an auxiliar equation which is variational, however new difficulties appear when handling the compactness. For instance, our approach can be applied for nonlinearities of the type \begin{document}$ \rho(x)f(u) $\end{document} where \begin{document}$ f $\end{document} is a concave-convex function and \begin{document}$ \rho $\end{document} satisfies the \begin{document}$ \mathrm{(H)} $\end{document} property introduced in [ 6 ]. We also note that we do not impose any integrability assumptions on the function \begin{document}$ \rho $\end{document} , which is imposed in most works.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信