{"title":"COST-SENSITIVE MULTI-CLASS ADABOOST FOR UNDERSTANDING DRIVING BEHAVIOR BASED ON TELEMATICS","authors":"Banghee So, J. Boucher, Emiliano A. Valdez","doi":"10.1017/asb.2021.22","DOIUrl":null,"url":null,"abstract":"ABSTRACT Using telematics technology, insurers are able to capture a wide range of data to better decode driver behavior, such as distance traveled and how drivers brake, accelerate, or make turns. Such additional information also helps insurers improve risk assessments for usage-based insurance, a recent industry innovation. In this article, we explore the integration of telematics information into a classification model to determine driver heterogeneity. For motor insurance during a policy year, we typically observe a large proportion of drivers with zero accidents, a lower proportion with exactly one accident, and a far lower proportion with two or more accidents. We here introduce a cost-sensitive multi-class adaptive boosting (AdaBoost) algorithm we call SAMME.C2 to handle such class imbalances. We calibrate the algorithm using empirical data collected from a telematics program in Canada and demonstrate an improved assessment of driving behavior using telematics compared with traditional risk variables. Using suitable performance metrics, we show that our algorithm outperforms other learning models designed to handle class imbalances.","PeriodicalId":8617,"journal":{"name":"ASTIN Bulletin","volume":"144 1","pages":"719 - 751"},"PeriodicalIF":1.8000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2021.22","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 14
Abstract
ABSTRACT Using telematics technology, insurers are able to capture a wide range of data to better decode driver behavior, such as distance traveled and how drivers brake, accelerate, or make turns. Such additional information also helps insurers improve risk assessments for usage-based insurance, a recent industry innovation. In this article, we explore the integration of telematics information into a classification model to determine driver heterogeneity. For motor insurance during a policy year, we typically observe a large proportion of drivers with zero accidents, a lower proportion with exactly one accident, and a far lower proportion with two or more accidents. We here introduce a cost-sensitive multi-class adaptive boosting (AdaBoost) algorithm we call SAMME.C2 to handle such class imbalances. We calibrate the algorithm using empirical data collected from a telematics program in Canada and demonstrate an improved assessment of driving behavior using telematics compared with traditional risk variables. Using suitable performance metrics, we show that our algorithm outperforms other learning models designed to handle class imbalances.
期刊介绍:
ASTIN Bulletin publishes papers that are relevant to any branch of actuarial science and insurance mathematics. Its papers are quantitative and scientific in nature, and draw on theory and methods developed in any branch of the mathematical sciences including actuarial mathematics, statistics, probability, financial mathematics and econometrics.