Axiomatizable classes of finite models and definability of linear order

A. P. Stolboushkin
{"title":"Axiomatizable classes of finite models and definability of linear order","authors":"A. P. Stolboushkin","doi":"10.1109/LICS.1992.185520","DOIUrl":null,"url":null,"abstract":"It may happen that a first order formula with two free variables over a signature defines a linear order of some finite structure of the signature. Then, naturally, this finite structure is rigid, i.e. admits the single (trivial) automorphism. Also, the class of all the finite structures such that the formula defines a linear order on any of them, is finitely axiomatizable in the class of all finite structures (of the signature). It is shown that the inverse is not true, i.e. that there exists a finitely axiomatizable class of rigid finite structures, such that no first-order formula defines a linear order on all the structures of the class. To illustrate possible applications of the result in finite model theory, it is shown that Y. Gurevich's (1984) result that E.W. Beth's (1953) definability theorem fails for finite models is an immediate corollary.<<ETX>>","PeriodicalId":6412,"journal":{"name":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","volume":"233 1","pages":"64-70"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1992.185520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

It may happen that a first order formula with two free variables over a signature defines a linear order of some finite structure of the signature. Then, naturally, this finite structure is rigid, i.e. admits the single (trivial) automorphism. Also, the class of all the finite structures such that the formula defines a linear order on any of them, is finitely axiomatizable in the class of all finite structures (of the signature). It is shown that the inverse is not true, i.e. that there exists a finitely axiomatizable class of rigid finite structures, such that no first-order formula defines a linear order on all the structures of the class. To illustrate possible applications of the result in finite model theory, it is shown that Y. Gurevich's (1984) result that E.W. Beth's (1953) definability theorem fails for finite models is an immediate corollary.<>
有限模型的公理化类与线性序的可定义性
在一个签名上有两个自由变量的一阶公式可能定义了该签名的某种有限结构的线性阶。那么,这个有限结构自然是刚性的,即承认单一(平凡)自同构。同样,所有有限结构的类,使得公式在它们中的任何一个上定义了一个线性阶,在所有有限结构的类中是有限公理化的。证明了逆是不成立的,即存在一类有限公理化的刚性有限结构,使得没有一阶公式在该类的所有结构上定义线性阶。为了说明该结果在有限模型理论中的可能应用,表明E.W. Beth(1953)的可定义性定理在有限模型中失效的Y. Gurevich(1984)的结果是一个直接推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信