Fast Similarity Retrieval of Vector Images Using Representative Queries

Takahiro Hayashi, A. Sato
{"title":"Fast Similarity Retrieval of Vector Images Using Representative Queries","authors":"Takahiro Hayashi, A. Sato","doi":"10.1109/ISM.2013.95","DOIUrl":null,"url":null,"abstract":"This paper presents a fast similarity retrieval method for vector images. To reduce the computational cost of similarity matching, the proposed method uses pre-calculation results of similarity matching, which are obtained in advance by matching DB images with previously selected images called representative queries. At runtime the proposed method just matches the actual query (the user-inputted query) and the representative queries. Comparing the similarities with the precalculated similarities, the proposed method quickly estimates the actual similarities of DB images to the actual query. Experimental results have shown that the retrieval time is greatly reduced by the proposed method without much deterioration of retrieval accuracy.","PeriodicalId":6311,"journal":{"name":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","volume":"119 1","pages":"498-499"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2013.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a fast similarity retrieval method for vector images. To reduce the computational cost of similarity matching, the proposed method uses pre-calculation results of similarity matching, which are obtained in advance by matching DB images with previously selected images called representative queries. At runtime the proposed method just matches the actual query (the user-inputted query) and the representative queries. Comparing the similarities with the precalculated similarities, the proposed method quickly estimates the actual similarities of DB images to the actual query. Experimental results have shown that the retrieval time is greatly reduced by the proposed method without much deterioration of retrieval accuracy.
基于代表性查询的矢量图像快速相似性检索
提出了一种矢量图像的快速相似度检索方法。为了降低相似度匹配的计算成本,该方法使用了相似度匹配的预计算结果,通过将DB图像与先前选择的图像进行匹配,即代表性查询,提前获得相似度匹配的预计算结果。在运行时,建议的方法只匹配实际查询(用户输入的查询)和代表性查询。通过与预先计算的相似度进行比较,该方法可以快速估计出DB图像与实际查询的实际相似度。实验结果表明,该方法在不影响检索精度的前提下,大大缩短了检索时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信