Transferring Objects: Joint Inference of Container and Human Pose

Hanqing Wang, Wei Liang, L. Yu
{"title":"Transferring Objects: Joint Inference of Container and Human Pose","authors":"Hanqing Wang, Wei Liang, L. Yu","doi":"10.1109/ICCV.2017.319","DOIUrl":null,"url":null,"abstract":"Transferring objects from one place to another place is a common task performed by human in daily life. During this process, it is usually intuitive for humans to choose an object as a proper container and to use an efficient pose to carry objects; yet, it is non-trivial for current computer vision and machine learning algorithms. In this paper, we propose an approach to jointly infer container and human pose for transferring objects by minimizing the costs associated both object and pose candidates. Our approach predicts which object to choose as a container while reasoning about how humans interact with physical surroundings to accomplish the task of transferring objects given visual input. In the learning phase, the presented method learns how humans make rational choices of containers and poses for transferring different objects, as well as the physical quantities required by the transfer task (e.g., compatibility between container and containee, energy cost of carrying pose) via a structured learning approach. In the inference phase, given a scanned 3D scene with different object candidates and a dictionary of human poses, our approach infers the best object as a container together with human pose for transferring a given object.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"156 1","pages":"2952-2960"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Transferring objects from one place to another place is a common task performed by human in daily life. During this process, it is usually intuitive for humans to choose an object as a proper container and to use an efficient pose to carry objects; yet, it is non-trivial for current computer vision and machine learning algorithms. In this paper, we propose an approach to jointly infer container and human pose for transferring objects by minimizing the costs associated both object and pose candidates. Our approach predicts which object to choose as a container while reasoning about how humans interact with physical surroundings to accomplish the task of transferring objects given visual input. In the learning phase, the presented method learns how humans make rational choices of containers and poses for transferring different objects, as well as the physical quantities required by the transfer task (e.g., compatibility between container and containee, energy cost of carrying pose) via a structured learning approach. In the inference phase, given a scanned 3D scene with different object candidates and a dictionary of human poses, our approach infers the best object as a container together with human pose for transferring a given object.
转移对象:容器与人体姿态的联合推理
将物品从一个地方转移到另一个地方是人类日常生活中常见的任务。在这个过程中,人类通常会直观地选择一个物体作为合适的容器,并使用有效的姿势来携带物体;然而,对于当前的计算机视觉和机器学习算法来说,这是非常重要的。在本文中,我们提出了一种通过最小化对象和姿态候选相关成本来联合推断容器和人体姿态的方法。我们的方法预测选择哪个物体作为容器,同时推理人类如何与物理环境相互作用,以完成给定视觉输入的物体转移任务。在学习阶段,该方法通过结构化的学习方法学习人类如何理性选择容器和姿势来转移不同的物体,以及转移任务所需的物理量(如容器和被容器之间的兼容性,搬运姿势的能量成本)。在推理阶段,给定具有不同候选对象和人体姿势字典的扫描3D场景,我们的方法推断出最佳对象作为容器以及用于转移给定对象的人体姿势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信