On nonlinear metric spaces of functions of bounded variation

IF 0.6 Q3 MATHEMATICS
V. N. Baranov, V. Rodionov
{"title":"On nonlinear metric spaces of functions of bounded variation","authors":"V. N. Baranov, V. Rodionov","doi":"10.35634/vm220301","DOIUrl":null,"url":null,"abstract":"In the first part of the paper, the nonlinear metric space $\\langle\\overline{\\rm G}^\\infty[a,b],d\\rangle$ is defined and studied. It consists of functions defined on the interval $[a,b]$ and taking the values in the extended numeric axis $\\overline{\\mathbb R}$. For any $x\\in\\overline{\\rm G}^\\infty[a,b]$ and $t\\in(a,b)$ there are limit numbers $x(t-0),x(t+0) \\in\\overline{\\mathbb R}$ (and numbers $x(a+0),x(b-0)\\in\\overline{\\mathbb R}$). The completeness of the space is proved. It is the closure of the space of step functions in the metric $d$. In the second part of the work, the nonlinear space ${\\rm RL}[a,b]$ is defined and studied. Every piecewise smooth function defined on $[a,b]$ is contained in ${\\rm RL}[a,b]$. Every function $x\\in{\\rm RL}[a,b]$ has bounded variation. All one-sided derivatives (with values in the metric space $\\langle\\overline{\\mathbb R},\\varrho\\rangle$) are defined for it. The function of left-hand derivatives is continuous on the left, and the function of right-hand derivatives is continuous on the right. Both functions extended to the entire interval $[a,b]$ belong to the space $\\overline{\\rm G}^\\infty[a,b]$. In the final part of the paper, two subspaces of the space ${\\rm RL}[a,b]$ are defined and studied. In subspaces, promising formulations for the simplest variational problems are stated and discussed.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm220301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the first part of the paper, the nonlinear metric space $\langle\overline{\rm G}^\infty[a,b],d\rangle$ is defined and studied. It consists of functions defined on the interval $[a,b]$ and taking the values in the extended numeric axis $\overline{\mathbb R}$. For any $x\in\overline{\rm G}^\infty[a,b]$ and $t\in(a,b)$ there are limit numbers $x(t-0),x(t+0) \in\overline{\mathbb R}$ (and numbers $x(a+0),x(b-0)\in\overline{\mathbb R}$). The completeness of the space is proved. It is the closure of the space of step functions in the metric $d$. In the second part of the work, the nonlinear space ${\rm RL}[a,b]$ is defined and studied. Every piecewise smooth function defined on $[a,b]$ is contained in ${\rm RL}[a,b]$. Every function $x\in{\rm RL}[a,b]$ has bounded variation. All one-sided derivatives (with values in the metric space $\langle\overline{\mathbb R},\varrho\rangle$) are defined for it. The function of left-hand derivatives is continuous on the left, and the function of right-hand derivatives is continuous on the right. Both functions extended to the entire interval $[a,b]$ belong to the space $\overline{\rm G}^\infty[a,b]$. In the final part of the paper, two subspaces of the space ${\rm RL}[a,b]$ are defined and studied. In subspaces, promising formulations for the simplest variational problems are stated and discussed.
关于有界变分函数的非线性度量空间
本文第一部分对非线性度量空间$\langle\overline{\rm G}^\infty[a,b],d\rangle$进行了定义和研究。它由在区间$[a,b]$上定义的函数组成,并采用扩展数字轴$\overline{\mathbb R}$中的值。对于任何$x\in\overline{\rm G}^\infty[a,b]$和$t\in(a,b)$,都有限制号码$x(t-0),x(t+0) \in\overline{\mathbb R}$(和号码$x(a+0),x(b-0)\in\overline{\mathbb R}$)。证明了空间的完备性。它是阶跃函数空间在度规$d$中的闭包。第二部分对非线性空间${\rm RL}[a,b]$进行了定义和研究。在$[a,b]$上定义的每个分段平滑函数都包含在${\rm RL}[a,b]$中。每个函数$x\in{\rm RL}[a,b]$都有有限的变化。所有单侧导数(在度量空间$\langle\overline{\mathbb R},\varrho\rangle$中有值)都为它定义。左边导数的函数在左边连续,右边导数的函数在右边连续。两个函数扩展到整个区间$[a,b]$,都属于空间$\overline{\rm G}^\infty[a,b]$。在论文的最后部分,定义并研究了${\rm RL}[a,b]$空间的两个子空间。在子空间中,给出并讨论了最简单变分问题的有希望的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
40.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信