Global and local energy minimizers for a nanowire growth model

IF 1.8 1区 数学 Q1 MATHEMATICS, APPLIED
I. Fonseca, N. Fusco, G. Leoni, M. Morini
{"title":"Global and local energy minimizers for a nanowire growth model","authors":"I. Fonseca, N. Fusco, G. Leoni, M. Morini","doi":"10.4171/aihpc/54","DOIUrl":null,"url":null,"abstract":"We consider a model for vapor-liquid-solid growth of nanowires proposed in the physical literature. Liquid drops are described as local or global volume-constrained minimizers of the capillarity energy outside a semi-infinite convex obstacle modeling the nanowire. We first address the existence of global minimizers and then, in the case of rotationally symmetric nanowires, we investigate how the presence of a sharp edge affects the shape of local minimizers and the validity of Young’s law. π 2 > θ λ , and max { π 2 , θ λ } < θ < π . In the first two cases, we show that S θ is a strict local minimizer. For a precise formulation we refer to the statements of Theorems 4.4 and 4.8 below. The case max { π 2 , θ λ } < θ < π is more delicate, and we are only able to show strict local minimimality of S θ with respect to admissible sets that coincide with S θ in a neighborhood of the north pole (see Theorem 4.9). The proofs of these theorems rely on calibration techniques and on the construction of foliating families of rotationally symmetric surfaces with constant mean curvature.","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"77 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/54","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

We consider a model for vapor-liquid-solid growth of nanowires proposed in the physical literature. Liquid drops are described as local or global volume-constrained minimizers of the capillarity energy outside a semi-infinite convex obstacle modeling the nanowire. We first address the existence of global minimizers and then, in the case of rotationally symmetric nanowires, we investigate how the presence of a sharp edge affects the shape of local minimizers and the validity of Young’s law. π 2 > θ λ , and max { π 2 , θ λ } < θ < π . In the first two cases, we show that S θ is a strict local minimizer. For a precise formulation we refer to the statements of Theorems 4.4 and 4.8 below. The case max { π 2 , θ λ } < θ < π is more delicate, and we are only able to show strict local minimimality of S θ with respect to admissible sets that coincide with S θ in a neighborhood of the north pole (see Theorem 4.9). The proofs of these theorems rely on calibration techniques and on the construction of foliating families of rotationally symmetric surfaces with constant mean curvature.
纳米线生长模型的全局和局部能量最小化
我们考虑了物理文献中提出的纳米线的气-液-固生长模型。液滴被描述为模拟纳米线的半无限凸障碍物外毛细能量的局部或全局体积约束最小化。我们首先解决了全局最小值的存在,然后,在旋转对称纳米线的情况下,我们研究了尖锐边缘的存在如何影响局部最小值的形状和杨氏定律的有效性。且Max {π 2, θ λ} < θ < π。在前两种情况下,我们证明了S θ是一个严格的局部最小值。对于精确的公式,我们参考下面定理4.4和4.8的陈述。max {π 2, θ λ} < θ < π的情况更为微妙,我们只能证明S θ在北极附近与S θ重合的可容许集的严格局部极小性(见定理4.9)。这些定理的证明依赖于标定技术和构造具有恒定平均曲率的旋转对称曲面的叶理族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.30%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信