Fitting a Gaussian Mixture Model Through the Gini Index

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
A. López-Lobato, M. L. Avendaño-Garrido
{"title":"Fitting a Gaussian Mixture Model Through the Gini Index","authors":"A. López-Lobato, M. L. Avendaño-Garrido","doi":"10.34768/amcs-2021-0033","DOIUrl":null,"url":null,"abstract":"Abstract A linear combination of Gaussian components is known as a Gaussian mixture model. It is widely used in data mining and pattern recognition. In this paper, we propose a method to estimate the parameters of the density function given by a Gaussian mixture model. Our proposal is based on the Gini index, a methodology to measure the inequality degree between two probability distributions, and consists in minimizing the Gini index between an empirical distribution for the data and a Gaussian mixture model. We will show several simulated examples and real data examples, observing some of the properties of the proposed method.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"479 1","pages":"487 - 500"},"PeriodicalIF":1.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2021-0033","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract A linear combination of Gaussian components is known as a Gaussian mixture model. It is widely used in data mining and pattern recognition. In this paper, we propose a method to estimate the parameters of the density function given by a Gaussian mixture model. Our proposal is based on the Gini index, a methodology to measure the inequality degree between two probability distributions, and consists in minimizing the Gini index between an empirical distribution for the data and a Gaussian mixture model. We will show several simulated examples and real data examples, observing some of the properties of the proposed method.
用基尼系数拟合高斯混合模型
摘要高斯分量的线性组合称为高斯混合模型。它广泛应用于数据挖掘和模式识别。本文提出了一种估计高斯混合模型密度函数参数的方法。我们的建议是基于基尼指数,这是一种衡量两个概率分布之间不平等程度的方法,包括最小化数据的经验分布和高斯混合模型之间的基尼指数。我们将展示几个模拟示例和真实数据示例,观察所提出方法的一些特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信