Top-heavy phenomena for transformations

Yaokun Wu, Yinfeng Zhu
{"title":"Top-heavy phenomena for transformations","authors":"Yaokun Wu, Yinfeng Zhu","doi":"10.26493/1855-3974.1753.52a","DOIUrl":null,"url":null,"abstract":"Let S be a transformation semigroup acting on a set Ω. The action of S on Ω can be naturally extended to be an action on all subsets of Ω. We say that S is `-homogeneous provided it can send A to B for any two (not necessarily distinct) `-subsets A and B of Ω. On the condition that k ≤ ` < k + ` ≤ |Ω|, we show that every `-homogeneous transformation semigroup acting on Ω must be k-homogeneous. We report other variants of this result for Boolean lattices and projective geometries. In general, any semigroup action on a poset gives rise to an automaton and we associate some sequences of integers with the phase space of this automaton. When the poset is a geometric lattice, we propose to study various possible regularity properties of these sequences, especially the so-called top-heavy property.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"465 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.1753.52a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let S be a transformation semigroup acting on a set Ω. The action of S on Ω can be naturally extended to be an action on all subsets of Ω. We say that S is `-homogeneous provided it can send A to B for any two (not necessarily distinct) `-subsets A and B of Ω. On the condition that k ≤ ` < k + ` ≤ |Ω|, we show that every `-homogeneous transformation semigroup acting on Ω must be k-homogeneous. We report other variants of this result for Boolean lattices and projective geometries. In general, any semigroup action on a poset gives rise to an automaton and we associate some sequences of integers with the phase space of this automaton. When the poset is a geometric lattice, we propose to study various possible regularity properties of these sequences, especially the so-called top-heavy property.
变换的头重脚轻现象
设S是作用于集合Ω的变换半群。S对Ω的作用可以自然地扩展为对Ω的所有子集的作用。我们说S是'齐次的前提是它可以在任意两个(不一定是不同的)情况下将A传送到B- Ω的子集A和B。在k≤' < k + '≤|Ω|的条件下,证明了作用于Ω的所有'齐次变换半群必须是k齐次的。我们报告了布尔格和射影几何的其他变体。一般情况下,任意半群作用于偏序集都会产生一个自动机,我们将一些整数序列与这个自动机的相空间联系起来。当偏序集是一个几何格时,我们提出研究这些序列的各种可能的正则性,特别是所谓的头重性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信