Combining Q-Learning and Multi-Layer Perceptron Models on Wireless Channel Quality Prediction

A. Piroddi, M. Torregiani
{"title":"Combining Q-Learning and Multi-Layer Perceptron Models on Wireless Channel Quality Prediction","authors":"A. Piroddi, M. Torregiani","doi":"10.3844/AJEASSP.2021.139.151","DOIUrl":null,"url":null,"abstract":"One of the most complex challenges that wireless communication systems will face in the coming years is the management of the radio resource. In the next years, the growth of mobile devices, forecast (CISCO, 2020), will lead to the coexistence of about 8.8 billion mobile devices with a growing trend for the following years. This scenario makes the reuse of the radio resource particularly critical, which for its part will not undergo significant changes in terms of bandwidth availability. One of the biggest problems to be faced will be to identify solutions that optimize its use. This work shows how a combined approach of a Reinforcement Learning model and a Supervised Learning model (Multi-Layer Perceptron) can provide good performance in the prediction of the channel behavior and on the overall performance of the transmission chain, even for Cognitive Radio with limited computational power, such as NB-IoT, LoRaWan, Sigfox.","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"36 1","pages":"139-151"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/AJEASSP.2021.139.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One of the most complex challenges that wireless communication systems will face in the coming years is the management of the radio resource. In the next years, the growth of mobile devices, forecast (CISCO, 2020), will lead to the coexistence of about 8.8 billion mobile devices with a growing trend for the following years. This scenario makes the reuse of the radio resource particularly critical, which for its part will not undergo significant changes in terms of bandwidth availability. One of the biggest problems to be faced will be to identify solutions that optimize its use. This work shows how a combined approach of a Reinforcement Learning model and a Supervised Learning model (Multi-Layer Perceptron) can provide good performance in the prediction of the channel behavior and on the overall performance of the transmission chain, even for Cognitive Radio with limited computational power, such as NB-IoT, LoRaWan, Sigfox.
结合q -学习和多层感知器模型的无线信道质量预测
无线通信系统在未来几年将面临的最复杂的挑战之一是无线电资源的管理。在未来几年,移动设备的增长,预测(思科,2020),将导致约88亿移动设备共存,并在未来几年呈增长趋势。这种情况使得无线电资源的重用尤为重要,就其本身而言,在带宽可用性方面不会发生重大变化。面临的最大问题之一将是确定优化其使用的解决方案。这项工作展示了强化学习模型和监督学习模型(多层感知器)的组合方法如何在预测信道行为和传输链的整体性能方面提供良好的性能,即使对于计算能力有限的认知无线电,如NB-IoT, LoRaWan, Sigfox也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信