Fast euclidean minimum spanning tree: algorithm, analysis, and applications

William B. March, P. Ram, Alexander G. Gray
{"title":"Fast euclidean minimum spanning tree: algorithm, analysis, and applications","authors":"William B. March, P. Ram, Alexander G. Gray","doi":"10.1145/1835804.1835882","DOIUrl":null,"url":null,"abstract":"The Euclidean Minimum Spanning Tree problem has applications in a wide range of fields, and many efficient algorithms have been developed to solve it. We present a new, fast, general EMST algorithm, motivated by the clustering and analysis of astronomical data. Large-scale astronomical surveys, including the Sloan Digital Sky Survey, and large simulations of the early universe, such as the Millennium Simulation, can contain millions of points and fill terabytes of storage. Traditional EMST methods scale quadratically, and more advanced methods lack rigorous runtime guarantees. We present a new dual-tree algorithm for efficiently computing the EMST, use adaptive algorithm analysis to prove the tightest (and possibly optimal) runtime bound for the EMST problem to-date, and demonstrate the scalability of our method on astronomical data sets.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"63 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835804.1835882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 100

Abstract

The Euclidean Minimum Spanning Tree problem has applications in a wide range of fields, and many efficient algorithms have been developed to solve it. We present a new, fast, general EMST algorithm, motivated by the clustering and analysis of astronomical data. Large-scale astronomical surveys, including the Sloan Digital Sky Survey, and large simulations of the early universe, such as the Millennium Simulation, can contain millions of points and fill terabytes of storage. Traditional EMST methods scale quadratically, and more advanced methods lack rigorous runtime guarantees. We present a new dual-tree algorithm for efficiently computing the EMST, use adaptive algorithm analysis to prove the tightest (and possibly optimal) runtime bound for the EMST problem to-date, and demonstrate the scalability of our method on astronomical data sets.
快速欧几里得最小生成树:算法,分析和应用
欧几里得最小生成树问题有着广泛的应用领域,已经开发出许多有效的算法来解决它。基于对天文数据的聚类和分析,提出了一种新的、快速的、通用的EMST算法。大规模的天文调查,包括斯隆数字巡天,以及早期宇宙的大型模拟,如千年模拟,可以包含数百万个点,并填满数tb的存储空间。传统的EMST方法是二次扩展的,而更高级的方法缺乏严格的运行时保证。我们提出了一种新的双树算法来有效地计算EMST,使用自适应算法分析来证明迄今为止最严格(可能是最优)的EMST问题运行时边界,并证明了我们的方法在天文数据集上的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信