Dynamic OD Prediction for Urban Networks Based on Automatic Number Plate Recognition Data: Paramertic vs. Non-parametric Approaches

F. Zheng, Jing Liu, H. Zuylen, Kun Wang, Xaobo Liu, Jie Li
{"title":"Dynamic OD Prediction for Urban Networks Based on Automatic Number Plate Recognition Data: Paramertic vs. Non-parametric Approaches","authors":"F. Zheng, Jing Liu, H. Zuylen, Kun Wang, Xaobo Liu, Jie Li","doi":"10.1109/ITSC.2019.8917229","DOIUrl":null,"url":null,"abstract":"OD flows provide important information for traffic management and planning. In this paper, we propose four OD prediction models based on the data obtained by Automated Number Plate Recognition (ANPR) cameras. The principal component analysis (PCA) is applied to reduce the dimension of the original OD matrices and to separate the main structure patterns from the noisier components. A state-space model is established for the main structure patterns and the structure deviations, and is incorporated in the Kalman filter framework to make prediction. We further develop three K- Nearest Neighbor (K-NN) based pattern recognition approaches. The proposed four approaches are validated with three days’ field ANPR data from Changsha city, P.R. China. The results show that on one hand our proposed approaches are able to make accurate prediction of OD flows under different demand conditions. On the other hand, the prediction accuracy is highly dependent on the quality of the available OD data: the Kalman filter model performs better for regular and periodic OD patterns; while for irregular OD matrices K-NN models could make more accurate prediction.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"536 1","pages":"4037-4042"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

OD flows provide important information for traffic management and planning. In this paper, we propose four OD prediction models based on the data obtained by Automated Number Plate Recognition (ANPR) cameras. The principal component analysis (PCA) is applied to reduce the dimension of the original OD matrices and to separate the main structure patterns from the noisier components. A state-space model is established for the main structure patterns and the structure deviations, and is incorporated in the Kalman filter framework to make prediction. We further develop three K- Nearest Neighbor (K-NN) based pattern recognition approaches. The proposed four approaches are validated with three days’ field ANPR data from Changsha city, P.R. China. The results show that on one hand our proposed approaches are able to make accurate prediction of OD flows under different demand conditions. On the other hand, the prediction accuracy is highly dependent on the quality of the available OD data: the Kalman filter model performs better for regular and periodic OD patterns; while for irregular OD matrices K-NN models could make more accurate prediction.
基于自动车牌识别数据的城市网络动态OD预测:参数与非参数方法
OD流为交通管理和规划提供了重要的信息。本文基于车牌自动识别(ANPR)相机获取的数据,提出了四种OD预测模型。采用主成分分析(PCA)对原始OD矩阵进行降维,从噪声分量中分离出主结构模式。建立了主要结构模式和结构偏差的状态空间模型,并将其纳入卡尔曼滤波框架进行预测。我们进一步发展了三种基于K-最近邻(K- nn)的模式识别方法。采用中国长沙市为期三天的ANPR野外数据验证了这四种方法。结果表明,本文提出的方法能够准确预测不同需求条件下的OD流量。另一方面,预测精度高度依赖于可用OD数据的质量:卡尔曼滤波模型对规则和周期OD模式表现更好;而对于不规则OD矩阵,K-NN模型的预测精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信