Limit theorems for integral functionals of Hermite-driven processes

Valentin Garino, I. Nourdin, D. Nualart, Majid Salamat
{"title":"Limit theorems for integral functionals of Hermite-driven processes","authors":"Valentin Garino, I. Nourdin, D. Nualart, Majid Salamat","doi":"10.3150/20-BEJ1291","DOIUrl":null,"url":null,"abstract":"Consider a moving average process $X$ of the form $X(t)=\\int_{-\\infty}^t x(t-u)dZ_u$, $t\\geq 0$, where $Z$ is a (non Gaussian) Hermite process of order $q\\geq 2$ and $x:\\mathbb{R}_+\\to\\mathbb{R}$ is sufficiently integrable. This paper investigates the fluctuations, as $T\\to\\infty$, of integral functionals of the form $t\\mapsto \\int_0^{Tt }P(X(s))ds$, in the case where $P$ is any given polynomial function. It extends a study initiated in Tran (2018), where only the quadratic case $P(x)=x^2$ and the convergence in the sense of finite-dimensional distributions were considered.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3150/20-BEJ1291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Consider a moving average process $X$ of the form $X(t)=\int_{-\infty}^t x(t-u)dZ_u$, $t\geq 0$, where $Z$ is a (non Gaussian) Hermite process of order $q\geq 2$ and $x:\mathbb{R}_+\to\mathbb{R}$ is sufficiently integrable. This paper investigates the fluctuations, as $T\to\infty$, of integral functionals of the form $t\mapsto \int_0^{Tt }P(X(s))ds$, in the case where $P$ is any given polynomial function. It extends a study initiated in Tran (2018), where only the quadratic case $P(x)=x^2$ and the convergence in the sense of finite-dimensional distributions were considered.
赫米特驱动过程的积分泛函的极限定理
考虑一个形式为$X(t)=\int_{-\infty}^t x(t-u)dZ_u$, $t\geq 0$的移动平均过程$X$,其中$Z$是一个阶为$q\geq 2$的(非高斯)Hermite过程,并且$x:\mathbb{R}_+\to\mathbb{R}$是充分可积的。本文研究了在$P$为任意给定多项式函数的情况下,形式为$t\mapsto \int_0^{Tt }P(X(s))ds$的积分泛函的涨落$T\to\infty$。它扩展了Tran(2018)发起的一项研究,其中只考虑了二次情况$P(x)=x^2$和有限维分布意义上的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信