Additive Manufacturing as an Important Industry Player for the Next Decades

Nastase-Dan Ciobota, G. Gheorghe, V. Despa
{"title":"Additive Manufacturing as an Important Industry Player for the Next Decades","authors":"Nastase-Dan Ciobota, G. Gheorghe, V. Despa","doi":"10.2478/bsmm-2019-0010","DOIUrl":null,"url":null,"abstract":"Abstract Additive Manufacturing (AM) concerns all classes of materials – polymers, metals, ceramics and glasses as well. For this reason, AM is in the focus of material scientists from all branches. Leaders of the industry realize that the possibilities of 3D printing are endless, and that these possibilities need ways and means to be taken full advantage of. Today, aerospace engineers are using the fused deposition modeling (FDM) method for rapid prototyping, part manufacturing, and tooling. They are followed by leaders and engineers from industry (industrial machines, motor vehicles, consumer products, medical/dental) but also from academic institutions and government/military.","PeriodicalId":30754,"journal":{"name":"Scientific Bulletin of Valahia University Materials and Mechanics","volume":"379 1","pages":"68 - 71"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Bulletin of Valahia University Materials and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bsmm-2019-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Additive Manufacturing (AM) concerns all classes of materials – polymers, metals, ceramics and glasses as well. For this reason, AM is in the focus of material scientists from all branches. Leaders of the industry realize that the possibilities of 3D printing are endless, and that these possibilities need ways and means to be taken full advantage of. Today, aerospace engineers are using the fused deposition modeling (FDM) method for rapid prototyping, part manufacturing, and tooling. They are followed by leaders and engineers from industry (industrial machines, motor vehicles, consumer products, medical/dental) but also from academic institutions and government/military.
增材制造是未来几十年重要的行业参与者
增材制造(AM)涉及所有类别的材料-聚合物,金属,陶瓷和玻璃。因此,增材制造是各分支材料科学家关注的焦点。行业领导者意识到3D打印的可能性是无限的,这些可能性需要充分利用的方法和手段。如今,航空航天工程师正在使用熔融沉积建模(FDM)方法进行快速原型制作、零件制造和模具制造。紧随其后的是来自工业(工业机械,机动车辆,消费品,医疗/牙科)以及学术机构和政府/军队的领导者和工程师。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
20
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信