Group Sparsity Based Target Localization for Distributed Sensor Array Networks

Qing Shen, Wei Liu, Li Wang, Yin Liu
{"title":"Group Sparsity Based Target Localization for Distributed Sensor Array Networks","authors":"Qing Shen, Wei Liu, Li Wang, Yin Liu","doi":"10.1109/ICASSP.2019.8683867","DOIUrl":null,"url":null,"abstract":"The target localization problem for distributed sensor array networks where a sub-array is placed at each receiver is studied, and under the compressive sensing (CS) framework, a group sparsity based two-dimensional localization method is proposed. Instead of fusing the separately estimated angles of arrival (AOAs), it processes the information collected by all the receivers simultaneously to form the final target locations. Simulation results show that the proposed localization method provides a significant performance improvement compared with the commonly used maximum likelihood estimator (MLE).","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"101 1","pages":"4190-4194"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The target localization problem for distributed sensor array networks where a sub-array is placed at each receiver is studied, and under the compressive sensing (CS) framework, a group sparsity based two-dimensional localization method is proposed. Instead of fusing the separately estimated angles of arrival (AOAs), it processes the information collected by all the receivers simultaneously to form the final target locations. Simulation results show that the proposed localization method provides a significant performance improvement compared with the commonly used maximum likelihood estimator (MLE).
基于组稀疏度的分布式传感器阵列网络目标定位
研究了分布式传感器阵列网络的目标定位问题,在压缩感知(CS)框架下,提出了一种基于群稀疏度的二维定位方法。它不是融合单独估计的到达角(AOAs),而是同时处理所有接收器收集的信息以形成最终目标位置。仿真结果表明,与常用的极大似然估计(MLE)相比,所提出的定位方法具有显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信