Swaminathan Narayanaswamy, S. Steinhorst, M. Lukasiewycz, M. Kauer, S. Chakraborty
{"title":"Optimal dimensioning of active cell balancing architectures","authors":"Swaminathan Narayanaswamy, S. Steinhorst, M. Lukasiewycz, M. Kauer, S. Chakraborty","doi":"10.7873/DATE.2014.153","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to optimal dimensioning of active cell balancing architectures, which are of increasing relevance in Electrical Energy Storages (EESs) for Electric Vehicles (EVs) or stationary applications such as smart grids. Active cell balancing equalizes the state of charge of cells within a battery pack via charge transfers, increasing the effective capacity and lifetime. While optimization approaches have been introduced into the design process of several aspects of EESs, active cell balancing architectures have, until now, not been systematically optimized in terms of their components. Therefore, this paper analyzes existing architectures to develop design metrics for energy dissipation, installation volume, and balancing current. Based on these design metrics, a methodology to efficiently obtain Pareto-optimal configurations for a wide range of inductors and transistors at different balancing currents is developed. Our methodology is then applied to a case study, optimizing two state-of-the-art architectures using realistic balancing algorithms. The results give evidence of the applicability of systematic optimization in the domain of cell balancing, leading to higher energy efficiencies with minimized installation space.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"150 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
This paper presents an approach to optimal dimensioning of active cell balancing architectures, which are of increasing relevance in Electrical Energy Storages (EESs) for Electric Vehicles (EVs) or stationary applications such as smart grids. Active cell balancing equalizes the state of charge of cells within a battery pack via charge transfers, increasing the effective capacity and lifetime. While optimization approaches have been introduced into the design process of several aspects of EESs, active cell balancing architectures have, until now, not been systematically optimized in terms of their components. Therefore, this paper analyzes existing architectures to develop design metrics for energy dissipation, installation volume, and balancing current. Based on these design metrics, a methodology to efficiently obtain Pareto-optimal configurations for a wide range of inductors and transistors at different balancing currents is developed. Our methodology is then applied to a case study, optimizing two state-of-the-art architectures using realistic balancing algorithms. The results give evidence of the applicability of systematic optimization in the domain of cell balancing, leading to higher energy efficiencies with minimized installation space.