Learning About Ambiguous Long-Term Prospects

Hongseok Choi
{"title":"Learning About Ambiguous Long-Term Prospects","authors":"Hongseok Choi","doi":"10.2139/ssrn.3490231","DOIUrl":null,"url":null,"abstract":"This paper investigates whether and when ambiguity afflicting the long-term prospects of a market fades away in a nonexchangeable environment (time-varying short-term prospects). Two types of ambiguity are considered: static (multiple priors) and dynamic (multiple laws of motion). In the absence of dynamic ambiguity, likelihood-based learning resolves the static ambiguity. In the presence of dynamic ambiguity, on the other hand, likelihood-based learning fails. In this case, the static ambiguity fades away if the agent incorporates into the objective criteria (likelihood) her subjective criteria (penalty proportional to the Kullback-Leibler divergence).","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3490231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates whether and when ambiguity afflicting the long-term prospects of a market fades away in a nonexchangeable environment (time-varying short-term prospects). Two types of ambiguity are considered: static (multiple priors) and dynamic (multiple laws of motion). In the absence of dynamic ambiguity, likelihood-based learning resolves the static ambiguity. In the presence of dynamic ambiguity, on the other hand, likelihood-based learning fails. In this case, the static ambiguity fades away if the agent incorporates into the objective criteria (likelihood) her subjective criteria (penalty proportional to the Kullback-Leibler divergence).
学习模棱两可的长期前景
本文研究了在不可交换的环境(时变的短期前景)中,影响市场长期前景的模糊性是否以及何时消失。考虑两种类型的模糊性:静态(多个先验)和动态(多个运动定律)。在不存在动态歧义的情况下,基于似然的学习解决了静态歧义。另一方面,在存在动态歧义的情况下,基于似然的学习失败。在这种情况下,如果代理将其主观标准(与kullbak - leibler散度成比例的惩罚)纳入客观标准(可能性),则静态模糊性就会消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信