An exponential function accelerator with radix-16 algorithm for spiking neural networks

Chenxiao Lin, Qingyang Zeng, D. Shang
{"title":"An exponential function accelerator with radix-16 algorithm for spiking neural networks","authors":"Chenxiao Lin, Qingyang Zeng, D. Shang","doi":"10.1587/elex.19.20220393","DOIUrl":null,"url":null,"abstract":"A range reduction method for shift-and-add algorithms for exponential functions is proposed in this paper. An exponential function accelerator with this method and radix-16 shift-and-add algorithm has been implemented in SMIC 55 nm CMOS process. Compared with the existing method, the proposed method reduces the latency (cycles) by 33% and 20% for 16 and 32-bit precision results, respectively; thereby increasing the throughputto50Mexp/sandreducingthepowerconsumptionto4.6pJ/exp.Inaddition,thismethodsavesdieareasincenoarithmeticunitsareadopted.Thisexponentialacceleratorissupposedtobeusedinaneuromorphicchipforspikingneuralnetworkmodeling.","PeriodicalId":13437,"journal":{"name":"IEICE Electron. Express","volume":"101 1","pages":"20220393"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Electron. Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/elex.19.20220393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A range reduction method for shift-and-add algorithms for exponential functions is proposed in this paper. An exponential function accelerator with this method and radix-16 shift-and-add algorithm has been implemented in SMIC 55 nm CMOS process. Compared with the existing method, the proposed method reduces the latency (cycles) by 33% and 20% for 16 and 32-bit precision results, respectively; thereby increasing the throughputto50Mexp/sandreducingthepowerconsumptionto4.6pJ/exp.Inaddition,thismethodsavesdieareasincenoarithmeticunitsareadopted.Thisexponentialacceleratorissupposedtobeusedinaneuromorphicchipforspikingneuralnetworkmodeling.
基于基数-16算法的脉冲神经网络指数函数加速器
本文提出了一种指数函数移位加算法的范围缩减方法。采用该方法和基数-16移位加算法的指数函数加速器已在中芯55nm CMOS工艺上实现。与现有方法相比,该方法在16位精度和32位精度下的延迟(周期)分别减少33%和20%;从而将吞吐量提高到50mexp /exp,并将功耗降低到4.6 pj /exp。此外,由于采用了改进算法单元,该方法节省了面积。该指数加速器被认为是用于spikingneuralnetwork建模的神经形态芯片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信