A. J. Ogunniran, Kayode S. Adekeye, J. Adewara, M. Adamu
{"title":"A Review of Change Point Estimation Methods for Process Monitoring","authors":"A. J. Ogunniran, Kayode S. Adekeye, J. Adewara, M. Adamu","doi":"10.11648/j.acm.20211003.13","DOIUrl":null,"url":null,"abstract":"When one or more observations fall outside the control limits, the chart signals the existence of a change in the process. Change point detection is helpful in modelling and prediction of time series and is found in broader areas of applications including process monitoring. Three approaches were proposed for estimating change point in process for the different types of changes in the literature. they are: Maximum Likelihood Estimator (MLE), the Cumulative Sum (CUSUM), and the Exponentially Weighted Moving Average (EWMA) approaches. This paper gives a synopsis of change point estimation, specifies, categorizes, and evaluates many of the methods that have been recommended for detecting change points in process monitoring. The change points articles in the literature were categorized broadly under five categories, namely: types of process, types of data, types of change, types of phase and methods of estimation. Aside the five broad categories, we also included the parameter involved. Furthermore, the use of control charts and other monitoring tools used to detect abrupt changes in processes were reviewed and the gaps for process monitoring/controlling were examined. A combination of different methods of estimation will be a valuable approach to finding the best estimates of change point models. Further research studies would include assessing the sensitivity of the various change point estimators to deviations in the underlying distributional assumptions.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"120 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11648/j.acm.20211003.13","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
When one or more observations fall outside the control limits, the chart signals the existence of a change in the process. Change point detection is helpful in modelling and prediction of time series and is found in broader areas of applications including process monitoring. Three approaches were proposed for estimating change point in process for the different types of changes in the literature. they are: Maximum Likelihood Estimator (MLE), the Cumulative Sum (CUSUM), and the Exponentially Weighted Moving Average (EWMA) approaches. This paper gives a synopsis of change point estimation, specifies, categorizes, and evaluates many of the methods that have been recommended for detecting change points in process monitoring. The change points articles in the literature were categorized broadly under five categories, namely: types of process, types of data, types of change, types of phase and methods of estimation. Aside the five broad categories, we also included the parameter involved. Furthermore, the use of control charts and other monitoring tools used to detect abrupt changes in processes were reviewed and the gaps for process monitoring/controlling were examined. A combination of different methods of estimation will be a valuable approach to finding the best estimates of change point models. Further research studies would include assessing the sensitivity of the various change point estimators to deviations in the underlying distributional assumptions.
期刊介绍:
Applied and Computational Mathematics (ISSN Online: 2328-5613, ISSN Print: 2328-5605) is a prestigious journal that focuses on the field of applied and computational mathematics. It is driven by the computational revolution and places a strong emphasis on innovative applied mathematics with potential for real-world applicability and practicality.
The journal caters to a broad audience of applied mathematicians and scientists who are interested in the advancement of mathematical principles and practical aspects of computational mathematics. Researchers from various disciplines can benefit from the diverse range of topics covered in ACM. To ensure the publication of high-quality content, all research articles undergo a rigorous peer review process. This process includes an initial screening by the editors and anonymous evaluation by expert reviewers. This guarantees that only the most valuable and accurate research is published in ACM.