THE NEW RANK ONE CLASS FOR UNCONSTRAINED PROBLEMS SOLVING

A. Mustafa
{"title":"THE NEW RANK ONE CLASS FOR UNCONSTRAINED PROBLEMS SOLVING","authors":"A. Mustafa","doi":"10.25271/sjuoz.2023.11.2.1049","DOIUrl":null,"url":null,"abstract":"One of the most well-known methods for unconstrained problems is the quasi-Newton approach, iterative solutions. The great precision and quick convergence of the quasi-Newton methods are well recognized. In this work, the new algorithm for the symmetric rank one SR1 method is driven.\nThe strong Wolfe line search criteria define the step length selection. We also proved the new quasi-Newton equation and positive definite matrix theorem. Preliminary computer testing on the set of fourteen unrestricted optimization test functions leads to the conclusion that this new method is more effective and durable than the implementation of classical SR1 method in terms of iterations count and functions.","PeriodicalId":21627,"journal":{"name":"Science Journal of University of Zakho","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of University of Zakho","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25271/sjuoz.2023.11.2.1049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most well-known methods for unconstrained problems is the quasi-Newton approach, iterative solutions. The great precision and quick convergence of the quasi-Newton methods are well recognized. In this work, the new algorithm for the symmetric rank one SR1 method is driven. The strong Wolfe line search criteria define the step length selection. We also proved the new quasi-Newton equation and positive definite matrix theorem. Preliminary computer testing on the set of fourteen unrestricted optimization test functions leads to the conclusion that this new method is more effective and durable than the implementation of classical SR1 method in terms of iterations count and functions.
新的排名第一的类解决无限制的问题
求解无约束问题最著名的方法之一是拟牛顿法,即迭代解。准牛顿方法具有精度高、收敛快的优点。本文提出了一种新的对称秩一SR1方法。强沃尔夫线搜索条件定义步长选择。证明了新的拟牛顿方程和正定矩阵定理。对14个不受限制的优化测试函数进行了初步的计算机测试,结果表明,该方法在迭代次数和函数方面比经典SR1方法的实现更有效、更持久。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
35
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信