Multi-Feature Approach for Bug Severity Assignment

Q4 Computer Science
A. Hamdy, A. El-Laithy
{"title":"Multi-Feature Approach for Bug Severity Assignment","authors":"A. Hamdy, A. El-Laithy","doi":"10.4018/ijossp.2020040101","DOIUrl":null,"url":null,"abstract":"When bug reports are submitted through bug tracking systems, they are analysed manually to identify their severity levels. A severity level specifies the negative impact of a bug on a system. With the huge number of submitted reports, setting the severity class manually is tedious and time consuming. Moreover, some bug types are reported more often than other types, which leads to imbalanced bug repositories. This paper proposes a multi-feature approach for automatic severity assignment, which leverages lexical, semantic, and categorical properties of the bug reports. The proposed approach utilizes word embeddings, topic model, vector space model, and an adapted K-Nearest Neighbour technique. Moreover, the impact of utilizing two sampling techniques, namely SMOTE and cluster-based under-sampling (CBU), were investigated. Experiments over two open source repositories, Eclipse and Mozilla, demonstrated that the proposed approach is superior to two previous studies.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"129 1","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.2020040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

When bug reports are submitted through bug tracking systems, they are analysed manually to identify their severity levels. A severity level specifies the negative impact of a bug on a system. With the huge number of submitted reports, setting the severity class manually is tedious and time consuming. Moreover, some bug types are reported more often than other types, which leads to imbalanced bug repositories. This paper proposes a multi-feature approach for automatic severity assignment, which leverages lexical, semantic, and categorical properties of the bug reports. The proposed approach utilizes word embeddings, topic model, vector space model, and an adapted K-Nearest Neighbour technique. Moreover, the impact of utilizing two sampling techniques, namely SMOTE and cluster-based under-sampling (CBU), were investigated. Experiments over two open source repositories, Eclipse and Mozilla, demonstrated that the proposed approach is superior to two previous studies.
Bug严重性分配的多特征方法
当bug报告通过bug跟踪系统提交时,它们会被手工分析以确定它们的严重级别。严重性级别指定错误对系统的负面影响。由于提交的报告数量庞大,手动设置严重性类既繁琐又耗时。此外,一些错误类型比其他类型报告得更频繁,这会导致错误存储库不平衡。本文提出了一种多特征的自动严重性分配方法,该方法利用了bug报告的词法、语义和分类属性。该方法利用词嵌入、主题模型、向量空间模型和自适应的k近邻技术。此外,还研究了使用两种采样技术(即SMOTE和基于簇的欠采样(CBU))的影响。在两个开放源码存储库(Eclipse和Mozilla)上进行的实验表明,所提出的方法优于之前的两个研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信