Effect of fly ash cement and polypropylene fibre on the performance of recycled aggregate concrete column under thermal loading: Experimental and numerical study
{"title":"Effect of fly ash cement and polypropylene fibre on the performance of recycled aggregate concrete column under thermal loading: Experimental and numerical study","authors":"Saranya Ilango, Vivek Singh, Chayanika Gogoi","doi":"10.1080/13287982.2021.1872994","DOIUrl":null,"url":null,"abstract":"ABSTRACT The utilization of industrial waste as a partial replacement in construction materials has been increasing rapidly in recent years. This Paper investigates the performance of reinforced concrete columns comprising of recycled aggregates, fly ash and synthetic fibres in varying percentage, under monotonic and thermal loads. Ten full scale reinforced concrete columns of size 150 x 150 x 750 mm were experimentally studied under compressive loads. Results of the experiment showed that the polypropylene (PP) fibre reinforced fly ash column with recycled aggregate consisting of 1.5% PP fibre, 15% fly ash and 25% recycled aggregates exhibited better load carrying and deflection capacities and was further considered for numerical analysis. The conventional column was modelled as a control specimen and the behaviour of polypropylene fibre-reinforced fly ash column with recycled aggregate was comparatively studied under the action of thermal loads in ABAQUS. In order to understand the effect of fibre-reinforced polymer (FRP) rebar reinforcement in columns under thermal loads, a parametric study was carried out by varying the type of reinforcement, using carbon fibre-reinforced polymer rebar (CFRP) and glass fibre-reinforced polymer rebar (GFRP). The polypropylene fibre-reinforced fly ash column with recycled aggregate reinforced with CFRP rebars exhibited better performance under thermal loads.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2021.1872994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT The utilization of industrial waste as a partial replacement in construction materials has been increasing rapidly in recent years. This Paper investigates the performance of reinforced concrete columns comprising of recycled aggregates, fly ash and synthetic fibres in varying percentage, under monotonic and thermal loads. Ten full scale reinforced concrete columns of size 150 x 150 x 750 mm were experimentally studied under compressive loads. Results of the experiment showed that the polypropylene (PP) fibre reinforced fly ash column with recycled aggregate consisting of 1.5% PP fibre, 15% fly ash and 25% recycled aggregates exhibited better load carrying and deflection capacities and was further considered for numerical analysis. The conventional column was modelled as a control specimen and the behaviour of polypropylene fibre-reinforced fly ash column with recycled aggregate was comparatively studied under the action of thermal loads in ABAQUS. In order to understand the effect of fibre-reinforced polymer (FRP) rebar reinforcement in columns under thermal loads, a parametric study was carried out by varying the type of reinforcement, using carbon fibre-reinforced polymer rebar (CFRP) and glass fibre-reinforced polymer rebar (GFRP). The polypropylene fibre-reinforced fly ash column with recycled aggregate reinforced with CFRP rebars exhibited better performance under thermal loads.
期刊介绍:
The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.