The Real-Complex Normal Distribution

A. Bos
{"title":"The Real-Complex Normal Distribution","authors":"A. Bos","doi":"10.1109/18.681349","DOIUrl":null,"url":null,"abstract":"An expression is derived for the distribution of a mixture of real and complex normal variates. The asymptotic distribution of the resulting real-complex maximum-likelihood estimates is the real-complex normal distribution derived. The covariance matrix of this distribution is particularly important. It is the asymptotic covariance matrix for maximum-likelihood estimates and the Cramer-Rao lower bound on the variance of the real-complex estimates in general. From this covariance matrix, the variance of the reconstructed complex-valued exit wave then follows using the pertinent propagation formulas. The resulting expressions show the dependence of the variance on the free microscope parameters used for experimental design.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"76 1","pages":"1670-1672"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.681349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

An expression is derived for the distribution of a mixture of real and complex normal variates. The asymptotic distribution of the resulting real-complex maximum-likelihood estimates is the real-complex normal distribution derived. The covariance matrix of this distribution is particularly important. It is the asymptotic covariance matrix for maximum-likelihood estimates and the Cramer-Rao lower bound on the variance of the real-complex estimates in general. From this covariance matrix, the variance of the reconstructed complex-valued exit wave then follows using the pertinent propagation formulas. The resulting expressions show the dependence of the variance on the free microscope parameters used for experimental design.
实复正态分布
导出了实正态变量和复正态变量混合分布的表达式。所得到的实复最大似然估计的渐近分布是导出的实复正态分布。这个分布的协方差矩阵尤为重要。它是极大似然估计的渐近协方差矩阵和一般实复估计方差的Cramer-Rao下界。根据协方差矩阵,利用相应的传播公式,得到重构的复值出口波的方差。所得表达式显示了方差与实验设计所用自由显微镜参数的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信