H. Elkhoukhi, M. Bakhouya, Majdoulayne Hanifi, D. El Ouadghiri
{"title":"On the use of Deep Learning Approaches for Occupancy prediction in Energy Efficient Buildings","authors":"H. Elkhoukhi, M. Bakhouya, Majdoulayne Hanifi, D. El Ouadghiri","doi":"10.1109/IRSEC48032.2019.9078164","DOIUrl":null,"url":null,"abstract":"Occupancy forecasting is considered as a crucial input for improving the performance of predictive control strategies in energy efficient buildings. In fact, accurate occupancy forecast is the key enabler for context-drive control of active systems (e.g. heating, ventilation, and lighting). This paper focuses on forecasting occupants' number using real-time measurements of CO2 concentration and its forecasting values. The main aim is to evaluate the accuracy of forecasting occupants' number by applying the steady state model (1) [16] on the CO2 forecast using recent deep learning approaches. The LSTM, a recurrent neural network based deep learning algorithm, is deployed to forecast the CO2 level in a dedicated space, a testlab deployed in our university for conducting experiments and assess approaches for energy efficiency in buildings. Preliminary results show the effectiveness of LSTM in forecasting occupants' number, which reaches 70% in accuracy.","PeriodicalId":6671,"journal":{"name":"2019 7th International Renewable and Sustainable Energy Conference (IRSEC)","volume":"80 1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC48032.2019.9078164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Occupancy forecasting is considered as a crucial input for improving the performance of predictive control strategies in energy efficient buildings. In fact, accurate occupancy forecast is the key enabler for context-drive control of active systems (e.g. heating, ventilation, and lighting). This paper focuses on forecasting occupants' number using real-time measurements of CO2 concentration and its forecasting values. The main aim is to evaluate the accuracy of forecasting occupants' number by applying the steady state model (1) [16] on the CO2 forecast using recent deep learning approaches. The LSTM, a recurrent neural network based deep learning algorithm, is deployed to forecast the CO2 level in a dedicated space, a testlab deployed in our university for conducting experiments and assess approaches for energy efficiency in buildings. Preliminary results show the effectiveness of LSTM in forecasting occupants' number, which reaches 70% in accuracy.