{"title":"Automatic Epileptic Seizure Onset-Offset Detection Based On CNN in Scalp EEG","authors":"P. Boonyakitanont, Apiwat Lek-uthai, J. Songsiri","doi":"10.1109/ICASSP40776.2020.9053143","DOIUrl":null,"url":null,"abstract":"We establish a deep learning-based method to automatically detect the epileptic seizure onsets and offsets in multi-channel electroencephalography (EEG) signals. A convolutional neural network (CNN) is designed to identify occurrences of seizures in EEG epochs from the EEG signals and an onset-offset detector is proposed to determine the seizure onsets and offsets. The EEG signals are considered as inputs and the outputs are the onset and offset. In the CNN, a filter is factorized to separately capture temporal and spatial patterns in EEG epochs. Moreover, we develop an onset-offset detection method based on clinical decision criteria. As a result, verified on the whole CHB-MIT Scalp EEG database, the CNN model correctly detected seizure activities over 90%. Furthermore, combined with the onset-offset detector, this method accomplished F1 of 64.40% and essentially determined the seizure onset and offset with absolute onset and offset latencies of 5.83 and 10.12 seconds, respectively.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"1225-1229"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
We establish a deep learning-based method to automatically detect the epileptic seizure onsets and offsets in multi-channel electroencephalography (EEG) signals. A convolutional neural network (CNN) is designed to identify occurrences of seizures in EEG epochs from the EEG signals and an onset-offset detector is proposed to determine the seizure onsets and offsets. The EEG signals are considered as inputs and the outputs are the onset and offset. In the CNN, a filter is factorized to separately capture temporal and spatial patterns in EEG epochs. Moreover, we develop an onset-offset detection method based on clinical decision criteria. As a result, verified on the whole CHB-MIT Scalp EEG database, the CNN model correctly detected seizure activities over 90%. Furthermore, combined with the onset-offset detector, this method accomplished F1 of 64.40% and essentially determined the seizure onset and offset with absolute onset and offset latencies of 5.83 and 10.12 seconds, respectively.