Automatic Epileptic Seizure Onset-Offset Detection Based On CNN in Scalp EEG

P. Boonyakitanont, Apiwat Lek-uthai, J. Songsiri
{"title":"Automatic Epileptic Seizure Onset-Offset Detection Based On CNN in Scalp EEG","authors":"P. Boonyakitanont, Apiwat Lek-uthai, J. Songsiri","doi":"10.1109/ICASSP40776.2020.9053143","DOIUrl":null,"url":null,"abstract":"We establish a deep learning-based method to automatically detect the epileptic seizure onsets and offsets in multi-channel electroencephalography (EEG) signals. A convolutional neural network (CNN) is designed to identify occurrences of seizures in EEG epochs from the EEG signals and an onset-offset detector is proposed to determine the seizure onsets and offsets. The EEG signals are considered as inputs and the outputs are the onset and offset. In the CNN, a filter is factorized to separately capture temporal and spatial patterns in EEG epochs. Moreover, we develop an onset-offset detection method based on clinical decision criteria. As a result, verified on the whole CHB-MIT Scalp EEG database, the CNN model correctly detected seizure activities over 90%. Furthermore, combined with the onset-offset detector, this method accomplished F1 of 64.40% and essentially determined the seizure onset and offset with absolute onset and offset latencies of 5.83 and 10.12 seconds, respectively.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"1225-1229"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We establish a deep learning-based method to automatically detect the epileptic seizure onsets and offsets in multi-channel electroencephalography (EEG) signals. A convolutional neural network (CNN) is designed to identify occurrences of seizures in EEG epochs from the EEG signals and an onset-offset detector is proposed to determine the seizure onsets and offsets. The EEG signals are considered as inputs and the outputs are the onset and offset. In the CNN, a filter is factorized to separately capture temporal and spatial patterns in EEG epochs. Moreover, we develop an onset-offset detection method based on clinical decision criteria. As a result, verified on the whole CHB-MIT Scalp EEG database, the CNN model correctly detected seizure activities over 90%. Furthermore, combined with the onset-offset detector, this method accomplished F1 of 64.40% and essentially determined the seizure onset and offset with absolute onset and offset latencies of 5.83 and 10.12 seconds, respectively.
基于CNN的头皮脑电图癫痫发作发作偏移自动检测
我们建立了一种基于深度学习的方法来自动检测多通道脑电图(EEG)信号中的癫痫发作和偏移。设计了一种卷积神经网络(CNN)来识别脑电图信号中癫痫发作的发生,并提出了一种发作-偏移检测器来确定癫痫发作的发作和偏移。将脑电信号作为输入,输出是起始和偏移。在CNN中,对一个滤波器进行分解,分别捕获脑电信号时代的时空模式。此外,我们开发了一种基于临床决策标准的发病偏移检测方法。结果,在整个CHB-MIT头皮脑电图数据库上验证,CNN模型正确检测癫痫发作活动超过90%。结合发作-偏移检测器,该方法完成了64.40%的F1,基本确定了癫痫发作和偏移,绝对发作和偏移延迟分别为5.83和10.12秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信